
High Thoughput
Molecular Pathology:
PathOS & Docker & Anomaly

Dr Kenneth Doig, Dr Thomas Conway
October 2019

https://github.com/PapenfussLab/PathOS

PathOS:
Web Based Variant Curation

The Molecular Pathology Department at Peter
MacCallum Cancer Centre (PMCC) reports on
over 1,000 patient samples per month with HTS
based assays.

PathOS is the in-house variant curation
platform, which spans some variant
prioritisation, curation, and reporting.

PathOS:
Web Based Variant Curation

●  Small amplicon panels with a few genes

○  ~80% of samples;
○  4-50 genes;
○  1,000-2,000 X coverage

●  Larger hybrid-capture panels with a few
hundred genes
○  ~20% of samples;
○  ~50-500 genes;
○  100-500 X coverage

Sample
registration

Sample
preparation

Sequencing

Read
alignment

Variant
calling

Annotation

Curation

Reporting

Phenotype not captured
fully

Workflow automation and
robotics required

High churn and disruptive
technology

Lack of clinical standard
variant databases

High churn and
disruptive technology

Massive data volumes, no
validation frameworks

Large numbers of variants to analyse,
lack of decision support systems

Limited expertise
constrains throughput
Limited expertise constrains

throughput

Pipeline must be ‘tuned’
to assay characteristics

Pipeline must be ‘tuned’ to assay
characteristics

Manual
Task

Automated
Task

The
image
cannot
be
display
ed.
Your
compu
ter

Doig, Papenfuss, Fox, Lancet Oncology 2015

PathOS

Anomaly

PathOS:
Web Based Variant Curation

PathOS has several components:

●  Tomcat/Grails web application
●  MariaDB (MySQL) back-end database
●  Httpd for serving VCF/BAM for IGV
●  Grails/Hibernate data ingestion

○  YAML/JSON for patient data, sequencing metadata
○  VCF/BAM for variants and data viewing

●  Aspose templating for reports
●  Annotation servers for enriching data
●  HL7 middleware for patient and assay data

(translates to YAML/JSON).

External components used by the clinical
scientist include:

●  Alamut
●  Hospital LIMS / EMR
●  IGV
●  Google Scholar
●  Other assays (Sanger,PCR etc)
●  Spreadsheets !

Doig et. al. Genome Med. 2017 Apr 24;9(1):38

PathOS:
Web Based Variant Curation

●  Current deployment has multiple daemons on (virtual) Linux hosts.

○  MariaDB, Tomcat, Metadata loader, Variant loader, Babble (HL7 middleware), Httpd
●  For various reasons specific versions of some components are required.
●  The evolution of the system is gradually separating site-specific code and configuration from core

code and configuration.
○  Patient, Assay, Sequencing metadata are YAML/JSON
○  As much isolation of dependency on specific locations for things
○  Allowing multiple instances to co-exist on a single server

(Production, UAT, Development, 3xResearch, Training (x lots!), Cloud)

Virtual Machines vs Containers

We initially set up a VirtualBox VM with all the
components for public access.

●  Configuration requires logging in and
editing files.

●  Mounting filesystems to serve VCF/BAM
files for IGV is complicated.

●  VMs are bulky, and there is not a standard
description for how to configure it when
the software is updated.

Switching to Docker simplifies things greatly.

●  Even the initial complicated dockerization
was simpler because all the steps were
captured:
○  Dockerfile for each separate component
○  Docker-compose to link them up

●  Private network simplifies naming,
credentials, & security

●  The overlay filesystem makes it simple to
add or replace files.

First Docker Version

Initially we had a docker-compose that made use of custom images for each service:

●  Database with pre-configured tables
●  Tomcat with WAR file, and configuration
●  JDK image for running sundry command-line tools
●  Httpd for serving VCF/BAM files
●  Haproxy to put everything behind a single HTTP/HTTPS port

To Image or not to Image?

Putting things in a custom image:

●  Can be very bulky
●  Can reduce flexibility
●  Makes updates harder
●  Makes docker-compose simple

Using a generic image:

●  Most updates won’t require repo access
●  Requires packaging of auxilliary data

○  Config files, default tables, scripts, …
●  Requires more complicated docker-

compose files.
●  Shared credentials are obvious

●  We should use secrets

Where we have got to

As thing have evolved, we’ve arrived at a much simpler setup.

●  Generic Database
○  Use docker-compose volumes for persistance across restarts
○  Use a “first-time-only” service to run some setup scripts (is there a better way?)

●  Custom Tomcat image with WAR file, and basic configuration
○  Serve BAM/VCF from the tomcat itself, so no Httpd required (avoids CORS problems)
○  Use volume to overwrite the configuration where necessary

●  Custom JDK image to load data
○  docker run -v <path-to-input-data>:/input-data.d/:ro loader
○  Will load YAML/JSON metadata, or VCFs
○  Pipes through gunzip -c if necessary

Current
Setup

Where we have got to

Startup order is an issue.

●  Required behaviour:
○  Mariadb starts and becomes ready
○  Grails app (on Tomcat) starts and creates tables in database (with some problems)
○  “First-time-only” scripts run to fix the tables and install some required rows in some tables

●  Docker-compose has different behaviour in different versions
○  V2 allows “depends_on” and healthchecks
○  V3 has weaker constraints to facilitate swarm

●  We use V2, with healthcheck configs to enforce dependencies

Where we have got to

It’s not perfect yet

●  It would be good if the configuration could be overwritten with environment variable
○  Like MYSQL_DATABASE, MYSQL_USER, MYSQL_PASSWORD, etc.

●  It would be really nice if there was builtin support for mounting zip-files in compose
○  curate:  

 image: tomcat7:jre7  
 depends_on:  
 - pathosdb  
 volumes:  
 - ${PWD}/config-bundle.zip:/etc/pathos/:ro

Containers for testing

Creating regression tests for a complex system is non-trivial:
●  Putting the system in a precisely known state
●  Testing error recovery can require “damaging” things
●  Cleaning up after so you don’t leave detritus around

Docker[-compose] is awesome for these things:
●  Simple “run this” tests can use a one-shot invocation
●  More complex tests start up in daemon mode

A simple test: transform some data

docker-compose.yaml

version: '2.1'
services:
 babble:
 image: openjdk:7-jre
 volumes:
 - ./babble-server.jar:/babble/lib/babble-server.jar:ro
 - ./006-babble-config.yaml:/babble/babble-config.yaml:ro
 - ./006-input.yaml:/babble/input.yaml:ro
 - ./output/:/babble/output/:rw
 working_dir: '/babble'
 command: ['java', '-jar', 'lib/babble-server.jar’,
 '-f', 'babble-config.yaml']

Wrapper shell script

#!/bin/bash
set –e
mkdir output
docker-compose -f 006-docker-compose.yaml up
docker-compose -f 006-docker-compose.yaml down
./yamldiff 006-input.yaml output/output.yaml
rm -rf output

A simple test: database test

docker-compose.yaml

version: '2.1'
services:
 babble:
 [almost same as before]
 test-database:
 image: mariadb
 environment:
 MYSQL_ROOT_PASSWORD: x
 volumes:
 - ./012-initdb.sql:/docker-entrypoint-initdb.d/00-initdb.sql:ro
 healthcheck:
 test: ['CMD', 'mysqladmin', '-uroot', '-px', 'version']
 interval: 10s
 timeout: 10s
 retries: 10

Wrapper shell script

#!/bin/bash
set -e
rm -rf output 2>/dev/null
mkdir output
docker-compose -f 012-docker-compose.yaml up -d
sleep 15
docker exec -i tests_test-database_1 \
 mysql -uroot -px \
 < 012-query.sql > output/output.txt
docker-compose -f 012-docker-compose.yaml down
diff -u 012-output.txt output/output.txt
rm -rf output

Singularity

Some relevant differences between Singularity and Docker

●  Docker containers run as root
●  Docker is oriented towards micro-services
●  Singularity is oriented toward HPC workflows
●  Docker makes Hospital IT deparments nervous

Network isolation is important for us simplifying our configuration, since everything exists on a private
network.

Annotation as a Service (AaaS)
Annotation:

“The process of enriching pipeline variants with genomic, biological and clinical data to inform
decision making”

●  Anomaly is a web service for annotating variants with a rich set of attributes from public DBs and
clinical APIs.

●  Microservice not a database
●  Created for cloud deployments to save installing 100’s of Gb of Annotation Data from many sources
●  Get best available annotations at the time of curation
●  Provide a schema to configure data sources (URLs) and attributes (JSONPath)
●  Can create a synthetic data source
●  Cache for retrieval efficiency

The Annotation
Hierarchy

chr: 9, pos: 21971187, ref: GG, alt: A

+ Transcript

+ Clinical Context

+ Case History

Consequences Splicing

In-silico predictors
CADD, Sift etc HGVSg Canonical

Allele identifier

Gene

Domain

HGVSc

Genomic

Transcription

Clinical

Patient
Therapy

Trial

Open Trials

Drugs Pubmed

Conservation Population freq.
+ Caller

Translation HGVSp

Consequences

Loss/Gain of
function

Thanks, questions ?

PathOS Workflow

Current Sources

Easily extended for any variant REST API

Identifier
 Description

VCF
 All unpacked attributes from input VCF file

Mutalyzer
 SNV description standardisation

ClinGenAR
 ClinGen Allele Registry

VEP
 Variant effect predictor (consequences)

MyVariant
 Variant data aggregation service

ClinGenER
 ClinGen Evidence Registry

VICC
 Variant Interpretation for Cancer Consortium
 X 6

Type

Genomic Transcript Translation Clinical

Create	your	own	data	source	

{:}

{:}

{:} VICC	

VEP	

ClinGen	AR	

MyVariant	

VCF	

JSONPath	 derived: {}

•  Navigate x.y[2].z
•  Collect {x.*.z}
•  Slices [start:end:step]
•  Filtering vcf.format.(RD<3.0)
•  colocated_variants[?(@.id =~ /COSM(\d+)/i)].id

http://jsonpath.com/ https://goessner.net/

{ sourceResults:
 {
 vcf: {}
 vep: {}
 …

}}

