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Scope

The aims of this study were:

▪ To monitor dissolution of a library of 37 ENMs used by the EU FP7 project 
NanoMILE, using the ECETOC tier 1 test, to identify patterns and descriptors 
(particulate, atomic/ionic) correlated with dissolution

▪ The potential to group ENMs based on their dissolution behaviour assuming
that dissolution is driven by the same physicohemical or atomic/ionic 
descriptors

▪ To develop a classification model to predict ENM dissolution based on the most 
significant physicochemical and/or atomic descriptors. 
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Materials and methods

▪ The ENMs assessed comprised of metal (Ag), oxides of Ti, Ce, Zr, Co, Zn, Fe(II) 
and Fe(III), Ca, Ba and Al, chemically doped bimetal oxides (Zr doped Ce ENMs 
with different dopant ratios), and physical mixtures of CeO2 with ZnO or CoO

▪ pH values of 1.5 and 7.0 simulating simplified physiologically significant 
environments of the gastrointestinal tract and lungs and which present the main 
routes of ENM exposure, via ingestion and inhalation, respectively

▪ Dispersion concentration: 0.5 mg / mL, when possible. Respective scaling was 
performed when pristine dispersions were more dilute than required

▪ Sampling took place for 5 timepoints: 2, 4, 8, 24 and 48 hours.

▪ Analysis took place for short-term (2 hours timepoint) and long-term (48 hours 
timepoint) dissolution



Materials and methods

▪ Due to the small sample size (< 50 data points / descriptor) the Kruskal-Wallis H 
test with the Dunn-Bonferroni post-hoc test was used to identify significant 
differences between ENM and their bulk analogues.

▪ Categorical Principal Component Analysis (CatPCA) was used to statistically 
identify the descriptors that contributed the most to the variance of the 
produced dataset.

▪ Data imputation was used to fill the gaps, as this helps reduce bias originating 
from smaller datasets and consequent increased difficulty in data handling and 
analysis



Descriptors studied

Particle descriptors
▪ Morphology (MP)
▪ Coating (CT)
▪ Coating charge (CTC)
▪ Size (SZ, including hydrodynamic diameter)
▪ Geometric surface area* (GSA)
▪ Corresponding sphere diameter* (CSD)
▪ Specific surface area (SSA, BET)
▪ ZP – zeta potential
Atomic descriptors
▪ Chemical formula (CF) 
▪ Atomic radius (AR)
▪ Electronegativity (ENG)
▪ Energy bang gap* (EBG)
▪ Ionic radius (IR)
▪ Valency (VLN)

* Corresponds to calculated descriptors



Results – 2 hours timepoint

▪ ENMs and their bulk analogues demonstrate higher dissolution under low pH conditions than at 
neutral pH

▪ Low pH: Ca-bearing ENM are the most soluble, followed by Zn-, Co-, Ba-bearing and Ag ENMs
▪ Neutral pH, Ag ENMs are most soluble followed by Zr-doped Ce-, Ba- and Co-bearing ENMs
▪ No statistically significant differences were observed between the ENM and the bulk (ZnO: p = 

0.392, TiO2: p = 0.433, CeO2: p = 0.406, Ag: p = 0.416) for both pH values



Results – 48 hours timepoint ZnO

▪ Higher dissolution at low vs neutral pH
▪ Significant difference between ENM and bulk dissolution for both pH values (KWH: p << 0.001)
▪ Dunn Bonferroni post hoc test: Only the uncoated ZnO ENM (PROM-ZnO, p=0.001 for both pH values) 

was significantly different than the bulk



Results – 48 hours timepoint TiO2

▪ Higher dissolution at low vs neutral pH, with exceptions (JRC NM-104, PROM-AA4040, PROM-F127, TiO2-NIST)
▪ Significant difference between ENM and bulk dissolution for both pH values (Low pH: p=0.003; neutral pH: p << 

0.001)
▪ Statistically significant difference: 

▪ Low pH: Uncoated (PROM-UN, p=0.003) and PVP coated (PROM-PVP, p=0.010)
▪ Neutral pH: PROM-D540 (p=0.004), AA4040 (PROM-AA4040) (p=0.011) and F127 (PROM-F127) (p=0.001) 

coated



▪ Higher dissolution at low vs neutral pH
▪ Significant difference between ENM and bulk dissolution for both pH values (KWH: p << 0.001)
▪ Statistically significant difference: uncoated CeO2 ENMs (PROM-Un, p=0.019 and PROM-011-A, p<<0.001)

Results – 48 hours timepoint CeO2



▪ Higher dissolution at low vs neutral pH with exceptions (Ag10, Ag20 and NM-300K)
▪ Significant difference between ENM and bulk dissolution for both pH values (KWH: p << 

0.001)
▪ Statistically significant difference from bulk: 

▪ Low pH, Ag10 (p=0.003) and Ag20 (p<<0.001)
▪ Neutral pH, Ag10 (p<<0.001), Ag20 (p=0.007) and NM-300K (p=0.037)

Results – 48 hours timepoint Ag



▪ Two principle components (PCi, i = 1,2,…) at low pH (75.3% of variance) and three at neutral pH
(84.3% of variance)

▪ ENM dissolution is in PC2 in both cases along with:
▪ Low pH: coating, coating charge, morphology, surface area and corresponding sphere diameter
▪ Neutral pH: coating, coating charge, valency and electronegativity

▪ PC1 includes:
▪ Low pH: chemical formula, valency, size, ζ-potential and electronegativity
▪ Neutral pH: morphology, size and surface area

Results – 2 hours timepoint CatPCA



Results – 48 hours timepoint CatPCA

▪ Same two principle components in both cases with variance of 78.5% and 78.4% for low and neutral 
pH respectively

▪ ENM dissolution is in PC1 in both cases along with:
▪ Both pH values: morphology, size and surface area

▪ PC2 includes:
▪ Both pH values:  chemical formula, coating and coating charge and valency

▪ In all cases (both pH values and time points), Cronbach’s α values (0.70 < α < 0.87) and total 
percentage of variance (75.3-84.3%) suggest high internal component consistency



Conclusions

▪ ENM dissolution is not always statistically significantly different from the respective bulk 
analogues

▪ Surface characteristics and size seem to affect ENM dissolution

▪ In the short-term (2 hours) dissolution results suggest that dissolution is driven by both 
particle and atomic ENM characteristics 

▪ In the longer-term (48 hours) particle characteristics dominate the process, with the 
exception of core metal valency

▪ Results suggest that an underlying mechanism of dissolution/reprecipitation (chemical 
transformation, Ostwald ripening) exists affecting the measured results

▪ ENM dissolution, especially in the short-term, should be studied taking also into account  the 
atomic ENM characteristics
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Materials and methods

▪ ENM clustering was attempted, in the entire dataset, using the categories 
defined during the OECD case study on Ag ENMs:
▪ High solubility (> 70%, 6 data rows)
▪ Moderate solubility (10 – 70%, 35 data rows)
▪ Low solubility (1 – 10%, 79 data rows)
▪ Negligible solubility (< 1%, 270 data rows)

▪ Due to the resulting unbalanced clustering, two clusters were defined:
▪ Soluble ENM (> 1%, 120 data rows)
▪ Negligible solubility (< 1%, 270 data rows)

▪ Descriptors with data gaps were removed from analysis to increase model 
robustness and reliability.



Materials and methods

▪ Fourteen descriptors used: pH, time, chemical formula, coating, coating charge, 
ζ-potential, size, morphology, atomic radius, ionic radius, electronegativity, 
valency, geometric surface area, corresponding sphere diameter

▪ Gaussian normalisation was applied to all data.

▪ The CFS (Correlation based Feature Selection) algorithm with BestFirst
evaluator was used to identify the most significant predictive descriptors.

▪ Prediction was performed using the J48 algorithm and the EnaloskNN algorithm 
for 3 neighbours with a random 75% : 25% ratio of training to test sets.



Materials and methods

▪ Read across testing was performed using the EnaloskNN algorithm (Enalos
Chem/Nanoinformatics tools) to study the selected training neighbours for each 
test ENM.

▪ The. Applicability Domain (area of reliable predictions) was tested using 
Euclidian distance of the used descriptors.

▪ Model validation and robustness was tested based on the OECD criteria for 
model validation and Y-randomisation (10 randomised calculations). 



Significant parameters selection

▪ The most significant parameters used for prediction are: 
▪ pH,
▪ chemical formula,
▪ ζ-potential
▪ coating, 
▪ size, 
▪ geometric surface area,
▪ Corresponding sphere diameter
▪ atomic radius and
▪ electronegativity.



J48 confusion matrix and statistics

▪ Statistics: 
▪ Total test classes: 98
▪ Correct classification: 90 (91.837%)
▪ Wrong classification: 8 (8.163%)
▪ Cohen’s κ: 0.808
▪ Accuracy: 0.918

▪ Sensitivity (< 1%): 0.941
▪ Specificity (< 1%): 0.867

Initial classification / classification > 1% < 1%

> 1% 26 4

< 1% 4 64

▪ Y-randomisation yielded in all cases statistically 
significant lower predictive power

▪ APD: 100% of predictions were reliable (APD 
limit value: 3.921) 



J48 decision tree
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EnaloskNN confusion matrix and statistics

▪ Statistics: 
▪ Total test classes: 98
▪ Correct classification: 91 (92.857%)
▪ Wrong classification: 7 (7.143%)
▪ Cohen’s κ: 0.836
▪ Accuracy: 0.929

▪ Sensitivity (< 1%): 0.926
▪ Specificity (< 1%): 0.933

Initial classification / classification > 1% < 1%

> 1% 28 2

< 1% 5 63

▪ Y-randomisation yielded in all cases statistically 
significant lower predictive power

▪ APD: 100% of predictions were reliable (APD 
limit value: 2.955) 



Read across examples

ENM / Neighbours Neighbour 1 Neighbour 2 Neighbour 3

TiO2 – F127 (8 H) TiO2 – F127 (24 H) TiO2 – F127 (48 H) TiO2 – AA4040 (24 H)

JRC TiO2 NM104 (48 H) JRC TiO2 NM104 (4 H) JRC TiO2 NM104 (24 H) JRC TiO2 NM103 (24 H)

PROM-CeO2-11A (48 H) PROM-CeO2-11A (24 H) PROM-CeO2-11A (4 H) CeO2 Uncoated (24 H)

Ce0.08Zr0.92O2 (48 H) Ce0.08Zr0.92O2 (24 H) Ce0.08Zr0.92O2 (8 H) Ce0.22Zr0.78O2 (24 H)

AlOOH (24 H) AlOOH (48 H) AlOOH (8 H) ZrO2 (2 H)



Complex ENM systems dissolution

▪ Hume-Rothery rules: metal alloys present high solubility if the difference in atomic radii of the 
high (solvent) and low (solute) concentrated metals is < 15%, and if the metals present similar 
crystal structures and small differences in valency and electronegativity.



Conclusions

▪ Modelling results are in good agreement with statistical analysis

▪ The statistically significant parameters identified for the entire dataset were: pH, chemical 
formula, size, geometric surface area, ζ-potential, coating, electronegativity, atomic radius

▪ Both the J48 and EnaloskNN provide similar classification results

▪ Both J48 and EnaloskNN provided robust and validated models

▪ J48 further refined the significant parameters to: pH, chemical formula, ζ-potential, coating, 
electronegativity, atomic radius

▪ EnaloskNN provided meaningful results for the read across of ENM

▪ Complex ENM systems dissolution could potentially be explained by the Hume-Rothery rules 
for alloy and solid solutions dissolution.
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