

Innovative **Nano**informatics models and tools: towards a **Sol**id, **ve**rified and Integrated Approach to Predictive (eco)Toxicology (**NanoSolveIT**)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 814572

NanoSolveIT aspires to introduce a ground-breaking in silico Integrated Approach to Testing and Assessment (IATA) for the environmental health and safety of Nanomaterials (NM), implemented through a decision support system packaged as both a stand-alone open software and via a Cloud platform.

NanoSolvelT

Duration: 01/01/2019 – 28/02/2023

NanoSolveIT will develop and deliver:

(i) a reliable user friendly knowledge-based infrastructure for data hosting, sharing and exploitation,

(ii) <u>NM fingerprints</u>, sets of nanodescriptors and properties that can be predictively linked to NM functionality, exposure and hazard, thereby supporting NM grouping, safe-by-design (SbD) and regulatory risk assessment (RA),

(iii) innovative methodologies for NMs predictive (eco)toxicology underpinned by artificial intelligence (AI) and state-of-the-art in silico techniques, and,

(iv) integration with currently developing multi-scale modelling, RA and governance frameworks developing in EU H2020 funded projects including caLIBRAte and expected in the newly funded NMBP-13 project(s).

NanoSolveIT will deliver

a <u>validated</u>, <u>sustainable</u>, <u>multi-scale</u>
 <u>nanoinformatics IATA</u>, tested and
 demonstrated at TLR6 via OECD-style case
 studies, to serve the needs <u>of diverse</u>
 <u>stakeholders</u> at each stage of the NMs value
 chain, for assessment of potential adverse
 effects of NM on human health and the
 environment.

Partners in the NanoSolvelT consortium

NanoSolveIT's positioning and liaison with other initiatives

Schematic illustration of the NanoSolvelT nanosafety informatics system components and their interlinkages

NanoSolveIT WPs

WP No	WP Title	Leader	Lead organisation
1	NanoSolveIT Knowledge Infrastructure	Egon Willighagen	UM
2	Design of Experiments for data gap filling to support in silico models	Eva Valsami - Jones	UoB
3	Predictive toxicogenomics modelling using omics data	Dario Greco	UTA
4	Development of a sustainable multi-scale modelling framework for NMs property prediction	Vladimir Lobaskin	UCD
5	Predictive Nanoinformatics Modeling using AI methodologies	Tomasz Puzyn	QSARLab
6	NanoSolveIT IATA for human and environmental RA	Iseult Lynch	UoB
7	Development of the NanoSolveIT e-Platform	Haralambos Sarimveis	NTUA
8	Dissemination, Knowledge Transfer & Exploitation	Maria Dusinska	NILU
9	Project Coordination & Management	Antreas Afantitis	NovaM

Naı	noSolveIT Gantt chart showing WP and Task timings														
WF	Task Year		Ye	ar 1			Ye	ar 2			Year	3		Year 4	
	Quarter	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 Q	3 Q4	Q1	Q2 Q3	Q4
1	NanoSolveIT Knowledge Infrastructure														
	1.1 System requirements, Specifications, and Development														
	1.2 Ontology annotation and Linked Data														
	1.3 Collection, curation, and operationalization of existing data														
2	Design of Experiments for data gap filling to support in silico models														
	2.1 Design of Experiments for gap-filling														
	2.2 NMs Synthesis & Characterisation														
	2.3 Toxicological assessment														
	2.4 Ecotoxicological assessment														
	2.5 Assay kits for data generation to support the IATA														
3	Predictive toxicogenomics modelling using omics data														
	3.1 Computational analysis of big OMICS data														
	3.2 Generation of predictive models of ENMs toxicity based on biological descriptors														
	3.3 Read-across analysis and grouping of ENMs based on biological descriptors														
\vdash	3.4 Exploring pathways of toxicity and Adverse Outcome Pathways (AOPs) of NMs														
4	Sustainable multi-scale modelling framework for ENMs property prediction														
	4.1 Systematic development of atomistic and coarse-grained (CG) force-fields for NMs														
	4.2 Calculation of structure descriptors and intrinsic properties of NMs														
	4.3 Calculation of property descriptors and extrinsic properties of NMs														
	4.4 Calculation of bionano interaction descriptors for ENMs and relevant biomolecules														
	4.5 Modelling of ENM functionality														
- 5	Predictive Nanoinformatics Modeling using AI methodologies														
	 Developing the system of descriptors related to the structure of ENMs (calculated) 														
	5.2 Developing the system of structure descriptors of ENMs based on electronic images												_		
	5.3 Methods for the structural alerts identification in relation to MOA														
	5.4 Developing the meta-models for intrinsic and extrinsic properties														
	5.5 Development of the integrated modelling strategy	_							_	_			_		
6	NanoSolveIT IATA for human and environmental RA													_	
	6.1 Development of informative NM fingerprints														
	6.2 Development of NM exposure models												<u> </u>		
	6.3 Development of toxicokinetics models														
	6.4 Development of agreed standards / predictive modelling SOPs & benchmarking via RRs														
	6.5 IATA-Integration/Linking of different types of nanoinformatics models														
	6.6 IATA Case studies	₩						_		_			_		
7	Development of the NanoSolveIT e-Platform														
	7.1 Definition of system architecture and specifications														
	7.2 Packaging of the developed nanoinformatics models and tools as microservices ePlatform														
	7.3 Development of the NanoSolveIT cloud platform				-										
	7.4 Development of the NanoSolveIT standalone application	-													
_	7.5 Documentation of services and development of training materials		_		_		_	_		_	_				
8	Dissemination, Knowledge Transfer & Exploitation				-										
	8.1.Spreading and circulating Information (Dissemination)														
	8.2 Communication & delivery of information/skills to stakeholders (Knowledge Transfer)														
	8.3 Making use of and benefiting from created knowledge and resources (Exploitation)														
	8.4 Long term exploitation of the NanoSolevIT IATA														
9	Project Co-ordination & Management 9.1 Operational management														
	9.1 Operational management 9.2 Scientific/technical coordination														
	9.2 Scientific/technical coordination 9.3 Progress control														
	7.5 Flogress control														

NanoSolvelT Overview WPs Interlinkages

NanoSolveIT overall concept and integration of multi-scale methods and tools

(1) Toxicogenomics data analysis (WP3) and key interactions

(3) Data-driven artificial intelligence modelling (WP5) and key inputs and outputs(4) Enalos Cloud Platform & Jaqpot APIs for nanoinformatics software development (WP6)

|| (4

Key Aspects

Advances in individual models to enhance their predictive power:

- Paradigm-breaking omics technologies for predictive toxicology and AOP analysis (WP3).
- A robust multiscale methodology towards material fingerprints (WP4)
- Meta-models development (WP4).
- Innovative in silico approaches based on ground-breaking techniques supported by AI (WP5).
- Identification of MIE a paradigm shift towards integrated physics-based and data-driven models (WP5).
- Beyond control banding to advanced exposure, PBPK and risk assessment modelling tools (WP6):

Key Aspects

Advances in model integration and utility for prediction of NM functional effects, hazard and risk:

- Novel nanodescriptors based on ground-breaking in silico techniques developed for NMs (WP6).
- Towards an Alternative Testing Strategy.
- Read-across considering the multi-perspective characterisation of NMs.

Key Aspects

Advances in accessibility of the model platforms and underpinning datasets:

- Cutting-edge research data management approaches (WP1).
- Novel data-gap filling approaches (WP2).
- Development of NanoSolveIT e-platform (WP7).
- Maximize International Synergies (WP8).

Dissemination & Communication Activities

Categories							
Press release	Participation to a Workshop						
Non-scientific and non-peer-reviewed publication (popularised publication)	Participation to an Event other than a Conference or a Workshop	Categories of persons reached					
Exhibition	Video/Film						
Flyer	Brokerage Event	Education, Research)					
Training	Pitch Event	Industry					
Social Media	Trade Fair	Civil Society					
Website	Participation in activities organized	General Public					
	jointly with other H2020 projects	Policy Makers					
Communication Campaign (e.g. Radio, TV)	Other	Media					
Participation to a Conference		Investors					
		Customers					
		Other					

NanoSolvelT Impact

Contact Us

@NanoSolveIT

www.nanosolveit.eu

www.novamechanics.com

Project NanoSolvelT

nanosolveit@novamechanics.com

NanoSolveIT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 814572

