

US EU RoadmapNanoinformatics-

Concept and Outline

Andrea Haase, Federal Institute for Risk Assessment (BfR) andrea.haase@bfr.bund.de

Fred Klaessig, Pennsylvania Bio Nano Systems, LLC fred.klaessig@verizon.net

Current situation

Europe:

 nanosafety data from more than 60 European and many national projects are stored ad hoc and dispersed over Europe

Nanosafety data are heterogeneous and include:

- Physico/chemical characteristics of NMs
- Toxicity/ Ecotoxicity
- Exposure
- Fate

. . . .

These data could be used

- to perform risk assessment (human and environmental safety)
- for model development
- for grouping
- for safe design and safe innovation

- ...

Objectives for a nanoinformatics roadmap

Objective 1: vehicle for community interaction, to support different stakeholders

Why?

- high amount of money has been spent on nanoEHS so far, future resources are limited
- many different stakeholders (industries, academia, agencies etc.), each with its own objectives & needs

The nanoEHS community needs

- 1) to make highest possible use of the currently existing data
- 2) guidance on which type of research/ which type of data is needed in future
- 3) a medium to help the community to "self-assemble" & to get to know the different players, their tools as well as their individual needs/ objectives

The nanoinformatics roadmap will support the community to

- 1) get to know the different stakeholders with their objectives & helps to create a benefit for each
- 2) describe the nanoinformatics processes and tools
- 3) give an overview which tools are available to whom & how to use them

Nanoinformatics tools are not only useful for specialized experts, but for all stakeholders!

Nanoinformatics "Players" Data Customers Data Customers Data Curators Data Curators

Data Analysts

...maybe not complete...

Objectives for a nanoinformatics roadmap

Objective 2: capture, preserve, disseminate all publicly-available NM data (experimental and computational)

Why:

- avoids remeasurement
- provides access to previous measurements
- assures consistency in reporting of results
- facilitates planning new measurements
- keeps results secure
- increases the ROI for measurement support

Thus, the goal is

- to build and to link different repositories
- to ensure that <u>all</u> publicly-funded NM (measurement) results are deposited

The roadmap will

- raise public awareness of the benefits
- describe how to achieve this goal step- by- step
- explain what kind of infrastructure is needed for this

Objectives for a nanoinformatics roadmap

Objective 3: Take advantage of existing NM measurement results

Why: - To advance nanotechnology and expedite its commercialization

- To help different stakeholders to reach their specific objectives

What: - Develop understanding of results

- Support model development

- Predict properties and performance of nanomaterials

- Correlate results with nanomaterial characteristics

- Correlate results with other functionality

- Advance development of new nanomaterials

- Support Safe-by-Design

- Support decision making

- Support regulation

. . . .

This objective is tightly linked to objective 2.

Objective 4: Identify specific pilot projects to reach the first three objectives.

Describe the way forward (= roadmap)

Nanoinformatics Processes and Impact

For communities Regulation peer control Quality Research **Industries** data analysis data mining For individuals **Experimental** gap filling (Data storage) Phase Knowledge hypothesis data documentation Models in particular useful for: High Throughput meta analysis **High Content** Systems Biology ("Omics") visualisation **Post- Experimental Pre-experimental** (Analysis) Phase (Planning) Phase data analysis generation of hypothesis data visualisation selection of materials quality control Prioritization gap filling benchmarks model generation

Update until Rheinfelden Meeting

- Interest in Nanoinformatics 2020 Roadmap expressed by Europe, June 2016 at US-EU COR Meeting (Andrea Haase)
- 2) U.S. and Canadian participation encouraged
- 3) Outline discussed over summer
- 4) First ideas for some chapters circulated in September
- 5) Intense discussion at 2-Day workshop in Rheinfelden 24 & 25 Oct.

Group Responses at Rheinfelden Meeting

- 1) Suggested a map of particle history for orienting the discussion
- 2) discussed issues of nanoform (nanoscale form in U.S.) and visualizing coatings
- 3) proposed and discussed 4 pilot projects
- 4) did not (yet) address decision tools or bioinformatics

Particle Surface Regions

Particle/Core/Substance

Comment

Chemical Grouping will become fit-for-purpose, e.g. silica-coated ZnO by

- Traditional chemistry (metal oxide)
- Environmental dispersal (SiO2)
- Protein Corona formation (SiO2)
- Toxicity mechanism remains Zn⁺²

Silica-coating likely stifles sulfidation

Do not know extent of multiple 'groupings'

Particle "Journey"

Nanoparticle

Properties

Formulation Interactions

Fate/ Exposure (Modelling)

EHS Testing

- 1) Test Media Interaction
- 2) Receptor Interaction
- 3) MIE
- 4) Cellular/ Tissue Response

Product Life Cycle
Until Release + Environment

Manufacturer Formulator

- 5) Adverse Outcome
- 6) Population Response

Particle "Journey" & Models & EHS

Models	Stages	EHS
Process & Performance	Particle	Manufacturer/Distributor
Materials Modeling QSAR Cheminfo Modeling ATS	Properties	Performance
Adsorption	Formulation Interactions	Processor/ Formulator
Multi-media transport Transformations	Fate/Exposure	Inhalation/ Oral/ Dermal Air/ Water/ Soil
Biological transf.	Test Media Interactions	Protein or Environmental Corona
AOP PBPK	Receptor	Uptake/ Biodistribution
	MIE	In organism/ Cell
↓	Response	Cellular/ Tissue Mechanisms
↓	(Adverse) Outcome	Whole animal
	Population	

Pilot Projects

- 1) Overview on current or future available databases & access conditions
 - caNano, CEIN, CEINT "now"; NANoREG completion + six months; leading to vision for Open Science

2) Dissolution

 Proposed as decision tool; determine industry interest; clarify regulator requirements; consider ageing; serve as coordinator

3) Training

 Survey current actors; incorporate help desk and P.I. proposals from NanoCommons and U.S.

4) Infrastructure(s)

- Instances of characterization and Ontology efforts at ASTM
- Revisting ISA-TAB-nano and NANoREG & JRC Templates (extend to other datasets focusing on error expressions, metadata parameters, etc.)
- Incorporate UDS considerations
- Address AOP and chemical grouping

Short Outline

Section 1: Data Gathering and Data storage

- a) Quality of Data
- b) Data curation
- c) Databases: ontologies, requirements, standards
- d) metadata
- e) Challenges: e.g. missing standards, heterogeneous datasets

Section 2: Data Analysis

a) Material modelling

- Modelling physical/ chemical descriptors of NM
- Explore how NM descriptors depend on the underlying physics and chemistry

b) **Chemoinformatics**

- Similarity Analysis
- Gap Filling (e.g. Read Across, QSAR)
- For exposure assessment & exposure modelling
- PBPK

c) Bioinformatics & AOP's

- d) Guidance for other communities
 - for pre-experimental planning, data storage, data analysis etc.
 - challenges
 - explain possible benefits and applications for different stakeholders (e.g. academia, regulatory agencies, industry)

Section 3: Data Accessibility & Data Exchange

Standards for information exchange

Section 4: Current Network

Overview on most important projects ongoing projects in EU and US

Training possibilities

Workshop and conference series

Section 5: Roadmap

Short term projects or action points

Medium term projects

Long Term projects (up to 2030)

Links

The European Materials Modelling Council

EMMC Roadmap 2016

The EMMC seeks to update its RoadMap for Materials Modelling to propose new topics aimed at recommendations for the 2018-2020 NMBP Programme.

As a first step the EMMC started an open survey to collect views on what materials modelling developments are required in order to respond to the application needs of the European industry. The inputs collected via this survey will lay the groundwork for elaboration of the EMMC RoadMap 2018-2020, a process which will start during a meeting in Brussels on 20th May 2016, with participation (by invitation) of many active survey contributors.

EMMC

The European materials modelling council (EMMC) is a community driven bottom-up action to connect all existing material modelling activities and stakeholders in Europe. The EMMC aims to network with all existing materials modelling related activities in Europe and make use of the EMMC network to complement these activities

Timeline

10/2016

01/2017

03/2017

06/2017

07/ 2017

Organizing

Writing first draft (regular teleconferences)

Optimizing (core team)

Proof reading/ commenting (wider community)

Final Layout

Rheinfelden workshop

Team organized

First Draft

Final Draft

Agreed Draft

Roadmap released

Core Team (to be extended)

Name		Affiliation
Andrea Haase	EU	German Federal Institute for Risk Assessment (BfR)
Frederick Klaessig	US	Pennsylvania Bio Nano Systems
Sabina Halappanavar	CAN	Health Canada
Mark D. Hoover	US	US NIOSH
Tomasz Puzyn	EU	University of Gdansk
John Rumble	US	P+R Data Service
Pietro Asinari	EU	Politecnico di Torino & European Materials Modelling Council
Claus Svedson, David Spurgeon, Marianne Matzke	EU	NERC-CEH
Eva Valsami- Jones, Iseult Lynch	EU	Uni Birmingham
Christine Hendren	US	Duke CEINT
Nina Jeliazkova	EU	IDEA
Barry Hardy, Lucian Farcal	EU	Douglas Connect
Philip Doganis	EU	Athens University
Dario Greco	EU	University of Helsinki
Sabine van Miert	EU	University of Antwerpen
Uko Maran	EU	University of Tartu
Ilise Feitshans	US	WHS USA & Europe Expert Nanotechnology Nanomedicine

Extended Team (not complete) NanoSafety Cluster

Name		Affiliation
Andrea Haase	EU	German Federal Institute for Risk Assessment (BfR)
Frederick Klaessig	US	Pennsylvania Bio Nano Systems
Stephanie Morris, Mervi Heiskanen, Christina Liu	US	NCI/ NIH
Lisa Friedersdorf	US	US NNO
Treye Thomas	US	US CPSC
Anil Patri	US	US FDA
Stacey Stanridge	US	US NNCC
Teresa Fernandes	EU	Herriot Watts University of Edingburgh
Bengt Fadeel	EU	Karolinska Institute
Hubert Rauscher, Hugues Crutzen	EC	JRC
Robert Rallo	US	

Thank you very much!

Please feel free to join us. We are looking for volunteers.