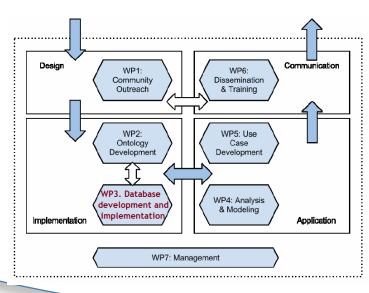
eNanoMapper database, search tools and templates

Nina Jeliazkova, Nikolay Kochev

IdeaConsult Ltd. Sofia, Bulgaria <u>www.ideaconsult.net</u>

- eNanoMapper database: data model, technology;
 NANoREG data transfer examples
- Search tools: free text, chemistry, semantic; API access
- ➢ I/O support: ISA & Excel templates

CONTENT



eNanoMapper summary

FP7 eNanoMapper - A Database and Ontology Framework for Nanomaterials Design and Safety Assessment

Grant Agreement: 604134,

1 Feb 2014 – 31 Jan 2017

Solutions available

Open source database and web application

Builds upon a Chemical structure database with support for substances.

The data model supporting experimental data is capable of representing all endpoints of regulatory interests and other types of data.

eNanoMapper ontology; developed by an experienced team at EBI. Existing ontologies are reused;

Tools to process and import data. Export in various formats

Searchable; Free text search based on ontology Integration of data analysis tools via API Flexible data hosting architecture

Organising the nanosafety data

Challenges

- Diverse data sources
- Diverse data input formats
- Different data organization
- Diverse modelling tools
- Approach:
 - Enable mappings!
 - i.e. eNanoMapper

Physico-chemical identity

Different analytic techniques, manufacturing conditions, batch effects, mixtures, impurities, size distribution, differences in the amount of surface modification, etc.

Biological identity

Wide variety of measurements, toxicity pathways, effects of ENM coronas, modes-of-action, interactions (cell lines, assays).

Processes requiring information

From raw data (science) to study summaries for regulatory purposes; linking with experimental protocols; risk assessment; grouping, safety-bydesign


Support for data analysis

Requires "spreadsheet" or matrix view of data. The experimental data in the public datasets is usually not in a form appropriate for modelling (merging multiple values, conditions, similar experiments into matrix form is a challenge).

The common eNanoMapper data model : enables conversions

data.enanomapper.net

🛞 eNanoMap	per	×			
\leftrightarrow \Rightarrow G	https://dat	a.enanomapper.i	net		
	Home	Search 🔻	Data collections 🔻	Data upload 🔻	For

 N. Jeliazkova, et al. "The eNanoMapper database for nanomaterial safety
 information," Beilstein J. Nanotechnol., vol. 6, pp. 1609–1634, Jul. 2015.

A substance database for nanomaterial safety information

free text search

Search

Search by identifier | by physchem parameters or biological effects | by composition | by citation | Browse | Upload

eNanoMapper database

The eNanoMapper prototype database is part of the computational infrastructure for toxicological data management of engineered

nanomaterials, developed within the EU FP7 eNanoMapper

Provides support for upload, search and retrieval of nanomaterials and experimental data through a REST web services API and a web browser interface.

The eNanoMapper prototype database is an open source web application, which can be <u>downloaded</u> ⊡^a, installed and hosted by individual researchers or labs, and as such presents an open distributed platform for nanomaterials data management. Publication: <u>doi:10.3762/bjnano.6.165</u> <u>L</u>^a.

23 November 2016

eNanoMapper FP7 #604134. This project has received

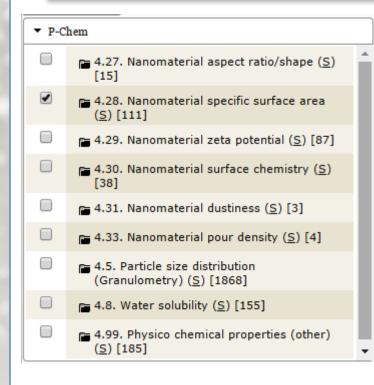
Implementation

- The database structure has two major concepts:
 - Substances, substance compositions, chemical structures
 - Experimental results (P-CHEM, ECOTOX, TOX, ENV-FATE)
- A generic description of any measurement. Does not specify what to record to describe particular experiment.
 - This information comes from NANoREG templates, IUCLID5 files, etc.
- The database software is based on an open source project <u>http://ambit.sf.net</u>
 - developed by eNanoMapper partner Ideaconsult since 2005, most recently : CEFIC LRI AMBIT tool for read across.
- The data model is capable of representing all endpoints of regulatory interests and other types of data.

NANoREG data transfer (ongoing)

rial	s Advanced s	earch Downlo	ad				
or	n 1 to 10 in pages o	f 10 • substar	nces 📹 <u>Previous</u> <u>Next</u> 🕨			JRC	
T	Substance	Substance	Substance Type	Public name	Reference substance UUID	• Owner	Info 🛓
	<u>TiO2 50-150 nm</u>	<u>NNRG-18280a4</u> ®	NPO_1486	JRCNM01000a(NM- 100)		NANoREG	Material code = JRCNM01000a(NM- 100) NANOREG material = Core material Supplier = JRC - IHCP,Fraunhofer
	<u>TiO2 6 nm</u>	<u>NNRG-a51b2e5</u> ®	NPO_1486	JRCNM01001a (NM- 101)		NANoREG	Material code = JRCNM01001a (NM- 101) NANOREG material = Core material Supplier = JRC - IHCP,Fraunhofer
-	<u>TiO2 21-22 nm</u>	<u>NNRG-0bddde2</u> ®	NPO_1486	JRCNM01002a(NM- 102)		NANoREG	Material code = JRCNM01002a(NM- 102) NANoREG material = Core material Supplier = JRC - IHCP
-	<u>TiO2 24.7 nm</u>	<u>NNRG-818defe7</u> 연	NPO_1486	JRCNM01003a(NM- 103)		NANoREG	Material code = JRCNM01003a(NM- 103) NANoREG material = Core material Supplier = JRC - IHCP
	<u>TiO2 23.4 nm</u>	<u>NNRG-91ca30a4</u> ®	NPO_1486	JRCNM01005a (NM- 105)		NANoREG	Material code = JRCNM01005a (NM- 105) NANOREG material = Alternative material Supplier = JRC - IHCP
	<u>ZnO 147 nm</u>	<u>NNRG-c6e82a0b</u> ₪	NPO_1542	JRCNM01100a (NM- 110)		NANoREG	Material code = JRCNM01100a (NM- 110) NANOREG material = Core material Supplier = JRC - IHCP
		sition UUID: NN	D Zincite RG-c6e82a0b-1eac-da0b-46	ad-d2bcb994d1ac			
	Туре 🔺	Name &	♦ EC No. ♦ C.	AS No. 🔶 Typical conce	ntration Concentratio	on ranges	♦ Structure ♦

www.nanoreg.eu



ed:

- parate instance database
- ch application ources:
- SQL database rted into eNM
- files ng ongoing)

NANoREG example: phys-chem

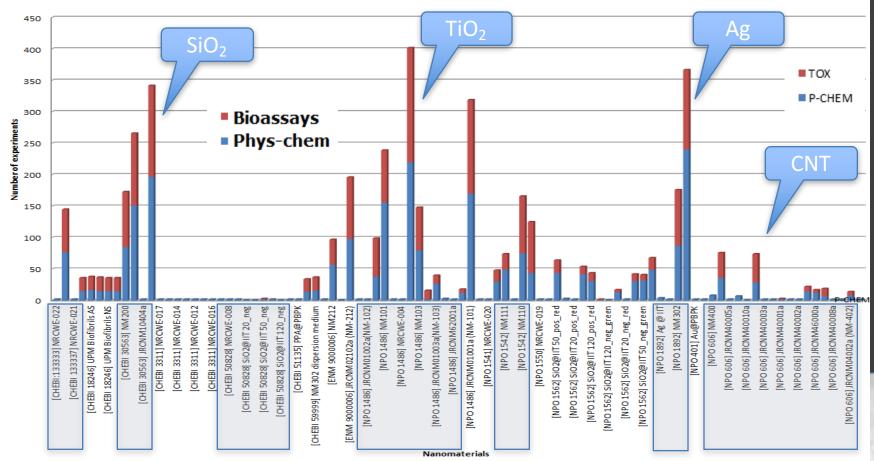
95 materials ~8475 data points

Nanomaterial specific surface					
Nationaterial specific surface	area (2) Specific	Surface Ar	'ea		
Reference 🔺	Protocol	Endpoint \$	Result \$	Owner 🍦	Relia
	VSSA	SBET	6.8 m2/g		
	T.absorbentgas: Nitrogen				
	T.analysispoints: 83 undefined				
	T.degassingramp: Yes	TOTAL SURFACE ST	6.8 m2/g		
	T.endrelativepressure: 0.997 undefined	TOTAL SOLTAGE ST	0.0 m2/g		
	T.instrumentmanufacturer: Micromeritics				
JRCNM0110a	T.instrumentmodel: TriStar II				
(2016)	T.instrumenttype: N2 Sorption	EXTERNAL SURFACE ST	2.2 m2/g	NRCWE	
	T.outgassingtemp: 30 Celsius				
	T.outgassingtime: 6 hour				
	T.sampleweight: 73 mg				
	T.startrelativepressure: 0.002 undefined	MICROPOROSITY SURFACE SU	4.5 m2/g		
	Dispersion protocol: None				
	Vial: JRCNM01100a				
	Supplier				
Provided		SPECIFIC SURFACE AREA	14 m2/g	JRC - IHCP	
owing 2 study(s) (1 to 2)				A	ous Ne

NANoREG example: bioassay

▼ Tox	
	4.99. Physico chemical properties (other) (<u>S</u>) [1]
	7.5.1. Repeated dose toxicity - oral (<u>S</u>) [39]
	🖀 7.99. Toxicity (other) (<u>S</u>) [169]
	BAO_0002167. Genotoxicity Assay (<u>S</u>) [571]
	BAO_0002168. Oxidative Stress Assay (S) [10]
	BAO_0003009. Cell Viability Assay (<u>S</u>) [846]
	ENM_0000044. Barrier integrity (S) [65]
	🖀 NPO_1339. Immunotoxicity (<u>S</u>) [214]

95 materials ~16876 data points


IUC Substa Filter JRCNM011	nce Composition Tox (81) P-Chem (44)			Expand all	Collapse all
ENM_0000044	munotoxicity (2) I Barrier integrity (4) ? Genotoxicity Assay (31)		_	_	•
BAO_0003009) Cell Viability Assay (44)	1			•
Reference	Protocol Cell VI	ability	Result 🗍	concentration	OwnerRelia
	MTS MEDIUM: MEM with glutamax + 10% FBS (A549 cells)	MAXIMUM TEER VALUES BEFORE STARTING NPS EXPOS	23.255 ohms/cm2	aggregated	
	MEDIUM.temperature: 37 Celsius MEDIUM.tonic_strength: 0 m	PERCENTAGE VIABILITY COMPARED TO CONTROL	17.203 %		
	MEDIUM.CO2_concentration: 5 %v/v MEDIUM.O2_concentration: 0 %v/v	PERCENTAGE VIABILITY COMPARED TO CONTROL	100 %	0.000 ug/ml	
A549 NM110 non-	Dispersion protocol: Dispersion by stirring (UNamur) Vial: JRCNM01100a020064	PERCENTAGE VIABILITY COMPARED TO CONTROL	101.934 %	1.000 ug/ml	
sonicated run 1 48h (2015)	E.cell_type: A549 E.days_of_differentiation: 0 d	PERCENTAGE VIABILITY COMPARED TO CONTROL	101.284 %	10.000 ug/ml	FUNDP
	E.exposure_time: 48 hour E.method: MTS	PERCENTAGE VIABILITY COMPARED TO CONTROL	98.326 %	25.000 ug/ml	
	E.method_supplier: NANOVALID E.positive_controlid: STAUROSPORINE	PERCENTAGE VIABILITY COMPARED TO CONTROL	99.61 %	50.000 ug/ml	
	E.sop_reference: NANOVALID SOP FOR MTS ASSAY E.well_plate: 96	PERCENTAGE VIABILITY COMPARED TO CONTROL	83.418 %	100.000 ug/ml	
	MTS MEDIUM: MEM with qlutamax + 10% FBS (A549 cells)	MAXIMUM TEER VALUES BEFORE STARTING NPS EXPOS	23.255 ohms/cm2	aggregated	
	MEDIUM.temperature: 37 Celsius MEDIUM.tonic_strength: 0 m	PERCENTAGE VIABILITY COMPARED TO CONTROL	42.123 %		
	MEDIUM.CO2_concentration: 5 %v/v MEDIUM.O2_concentration: 0 %v/v	PERCENTAGE VIABILITY COMPARED TO CONTROL	100 %	0.000 ug/ml	

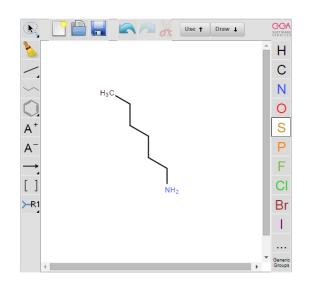
NANoREG data availability (as of Oct 2016)

NANoREG data availability

- Free text / faceted search
- Chemistry structure and similarity search
- Data access via API
- Semantic search
- Search integration

SEARCH TOOLS

NANOREG DB search application https://sandbox.ideaconsult.net/search/nanoreg1


C	Home	Search 🔻	Data collections <	Data upload 🔻	For developers	• Help •	_		Search	
NANSREG	NANoRE	G search	page (demo)				Search	carbon nanotube		
Data sources (19)		Hits li	st Selection (3)			_			_
 Nanomaterial type 	e (92)	immun	notoxicity Particle s	size distribution (Granul	lom 🖣 🛛 carbon nanc	otube 🖣				Clear
 P-CHEM (18) 		< 1 > 0	displaying 1 to 19 o	r 19						
Particle size distributio	on (Granu	+ &			1WCNT 13.5 nm		nanotube			C ²
Specific surface area		+	more	e size distribution	(Granulometry) [[DLS] [2015]	-> Se	elected 1	filters Add t	o Selection
• TOX (1)			1BCNM04001	- (NM 401) (N	1WCNT 64.2 nm) carbon r				-7
 Medium (1) 		· · · · · · · · · · · · · · · · · · ·		. , .	(Granulometry) [[lanotube			E.
Dispersion protoco	ol (1)		<u>more</u> Matarial Composition	- Chudu - Eutomol dotab						- Colontina
 Results 			Material Composition	n <u>Study</u> External datab	<u>base</u>				Add t	o Selection
 References (19) 		· · · · · · · · · · · · · · · · · · ·			1WCNT 12.7 nm	-	nanotube			ළ
 Protocols (19) 			P-CHEM.Particle more	e size distribution	(Cranulometry) [[
			Material Composition	n <u>Study</u> External datab	base		List of	data re	sources	lection
 Instruments (0) 		· · · · · · · · · · · · · · · · · · ·		. , .	WCNT 12 nm) (Granulometry) [[with d	irect lin	ks to DB	C ⁷
				n <u>Study</u> External datab	base				<u>Add t</u>	o Selection
ets or filter	S	<u>ፍ</u>	JRCNM40001	a (MWCNT 15	nm) carbon nar	notube				C ²
it permit ea	SV		P-CHEM.Particle	•	(Granulometry) [S		1			
	~ /		<u>More</u> Material <u>Composition</u>	<u>Study</u> External datab	base				Add t	o Selection
inement of										
irch		· · · · · · · · · · · · · · · · · · ·		•	nm) carbon nar (Granulometry) [S		1			Ľ
			more				1			
			Material Composition	n <u>Study</u> External datab	base				Add t	o Selection

eNanoMapper

Search tools: chemistry

• Chemical structure search: exact, similarity,

substructure

Chemical similarity is a pivotal concept in cheminformatics, encompassing a variety of computational methods quantifying the extent to which two chemical structures resemble each other.

) <u>S</u> e	arch	structures and as	ssociated d	ata													
E	kact s	structure Simila	arity Sub	ostructure U	RL					E Filter b	substance	0.5	C(N)CCCCC			٩	1
	dent	tifiers Datas	ets					-								Expor	rt
Sh	owing	g from 1 to 3 in page	es of 20	🔹 entries 📹	Previous Ne	<u>xt</u> 🕨							F	ilter			
		Diagram	CasRN	EC number	IUCLID 5 R		Names 🔶	Trade	Name 🛛 IU	PAC name	SMILES	S ∉	Std. InChi key 🍦	Std. InChi (REACH registration d	ate 🕴 Similari	rity 🕸
					FCSV-97 ବ	UHFFFAC NIInChI=1 2-3-4-5-6- 13-14-15-	n-1- YJJPSVUYRZGE- DYSA- IS/C18H39N/c1- -7-8-9-10-11-12- 16-17-18-19/h2- Iştearylamine 1-	-	-		NCCCCC ବ		REYJJPSVUYRZGE- UHFFFAOYSA-N	inChi=1S የ	-	0.72	
		~~~~~	Identifier	s Substances from 1 to 4 in Substan Name	pages of 20	▼ sul tance IID ↓	bstances 🔌 <u>Previo</u> Substance Typ		t 🕨 Public na		ference bstance \$		Coa	ting	Tuto	Contained in as	
- 1			· 1 ·	S40.HDA	FCSV:	<u>·0e</u> N	NPO_1892		S40.HDA		UUID 5V-9a	Pred	ein Corona Fingerprinti licts the Cellular Intera and Silver Nanopartic	ction of	Classification tionic	coating 0	-
6			- 2 -	G60.HDA	FCSV ®	- <u>ac</u> N	NPO_401		G60.HDA	EC ®	<u>5V-50</u>	Pred	ein Corona Fingerprinti licts the Cellular Intera l and Silver Nanopartic	ction of	Classification = Cationic	coating <b>Đ</b>	
			- 3 -	G15.HDA	<u>FCSV</u> षे	. <u>c4f</u> №	NPO_401		G15.HDA	<u>FC</u>	<u>SV-50</u>	Pred	ein Corona Fingerprinti licts the Cellular Intera and Silver Nanopartic	ction of	Classification = Cationic	coating 0	
			- 4 -	G30.DDT@	)HDA <u>FCSV</u>	<u>-cb</u> №	NPO_401		G30.DDT@	HDA <u>FC</u>	<u>5V-50</u>	Pred	ein Corona Fingerprinti licts the Cellular Intera I and Silver Nanopartic	ction of	Classification = Cationic	coating <b>O</b>	
- :					FCSV-0b ම	6-Amino-1	1-hexanethiol	-	-		NCCCCC ®		WYYXDSQOPIGZPU- UHFFFAOYSA-N	InChI=1S ੴ	-	0.62	•





# Data access: web browser, API http://enanomapper.github.io/API/

Client	API			Server
Titanium Dioxide (1102)	GET /bundle	Get all bundles	Groter Age & North - De	distributes - Dala das la Paraleskon - Hajan - Mala <u>distributes di seren</u> di serenge janta
n na mainte an ann an Anna Anna Chairdean Fhainne	•		Non-activation         Non-activation         Non-activation           Antimproving the contract of the second state         Antimproving the contract of the second state         Antimproving the second state           -         Mathematication         Antimproving the second state         Antimproving the second state	A manual grand a body of the second s
Be new			• • • •	A Construction of the second s
	POST /bundle	Create bundle	an na t	Arright 5 Benefic Sectors of Sect

- REST API: a way computer programs talk to one another. Can be understood in terms of how a programmer sends instructions between programs.
- Access the database via any programming language, Workflow systems, Data analysis tools (R, JavaScript, Java, Ruby used by eNanomapper partners)
- eNanoMapper Tutorials:
  - <u>http://www.enanomapper.net/enm-tutorials</u>
  - <u>https://github.com/enanomapper/tutorials</u>





### Search data integration: https://search.data.enanomapper.net

🚱 eNanoMapper 🛛 🗙 📃	Home Search Y Data collections Y Data upload Y For developers Y Help Y
← → C	nomapper.net/?search=ZnO
Home	Search   Data collections  Data upload  Data templates  For dev  Multi-Walled Carbon Nanotub  Later of the second
Integrated view of 🧐 <u>e</u> [contributors] and 🥮 <u>c</u>	Transmission Electron Microscopy (TEM) MASS MEDIAN DIAMETER [3, 20) nm [3, 20] nm
Data sources (140)     NanoWiki     DNT     Nanotechnology	Hits list       Selection       MASS MEDIAN AERODYNAMIC DIAMETER       -       2 (reliable with restrictions)         nanotube       Showing 1 study(s) (1 to 1)       Showing 1 study(s) (1 to 1)       PARTICLE SIZE.090       12.7 nm         < 1 2 3 7 8 > displaying 1 to 20 of 154       1.28 Nanomaterial specific surface area (1)       V       V       V
SNU_CHINA STANFORD STANFORD_Che TAM_UT UM UNC	Multi-Walled Carbon Nanotubes (MWCNT), synthetic shape mono constituent substance [12,7,mm]       +.29 Nanomaterial zeta potential (1)       •         P-CHEM.Specific surface area [DIN66121]       *       +.31 Nanomaterial dustiness (1)       •         Material Composition Study       Add to Selection       *
<ul> <li>Nanomaterial type (153)</li> <li>P-CHEM (65)</li> <li>TOX (32)</li> <li>Cell (20)</li> </ul>	STANFORD-ZLiuCR2008-02 carbon nanotube P-CHEM.Particle size distribution (Granulometry) The average length of SWNT-PTX was 106 nm with a standard deviation of 64 nm. [size] [2008] more caNanoLab caNanoLab caNanoLab caNanoLab
<ul> <li>Species (1)</li> <li>Results (0)</li> <li>References (74)</li> </ul>	STANFORD-ZLiuCR2002-01 carbon nanotube     Avgaton TRE     General Info     Composition     Starting Starting Composition     Starting Starting Composition     Starting Composited Composition     Starting Composition     Starting Composition
Protocols (44)	caNanoLab     caNanoLab Wiki     Created Date     1/14/11       NCI CGNT Home     Kcywords     EX.VNO       NCL Home     NCL SN Home     THERAPEUTIC EFFICACY
<ul> <li>Instruments (0)</li> </ul>	SNU-NJiaNL2007-01 multi-walled nanotube     P-CHEM.Particle size distribution (Granulometry) [2007]     more     Point of Contact Parson     Contact     Contact     Contact     Co
23 November 2016	<u>caNanoLab</u> Add to Selection

- ➢ ISA-TAB, ISA-TAB-NANO
- ➢ ISA-JSON
- Excel spreadsheets
- Export formats

# I/O SUPPORT: ISA & EXCEL TEMPLATES





# ISA-TAB/ISA-JSON isatab

Version 1 – ISA-TAB (Nov 2008) Data is described in 3 layers Tab delimited format (*.txt) Only meta data is stored Pointers to the real data Ontology references Additional configurations

### ISA-JSON version 1 (officially released 2016)

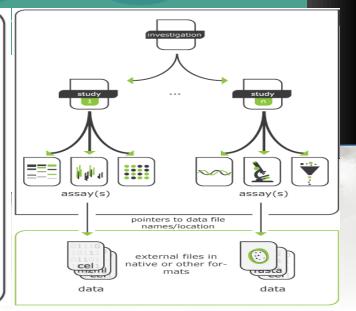
### ISA-JSON Version 2 (under development)

23 November 2016



#### investigation

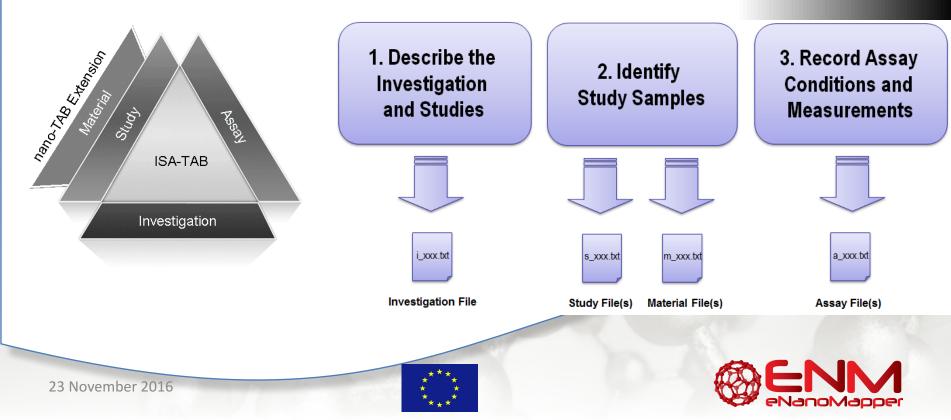
high level concept to link related studies


#### study

the central unit, containing information on the subject under study, its characteristics and any treatments applied.

a study has associated assays

#### assay


test performed either on material taken from the subject or on the whole initial subject, which produce qualitative or quantitative measurements (data)



### **ISA-TAB-Nano**



ISA-TAB-Nano uses the three primary files of ISA-TAB investigation file, study file, and assay file; and introduces a fourth file called the **material file**.



# **ISA-JSON** project

### https://github.com/ISA-tools/isa-api

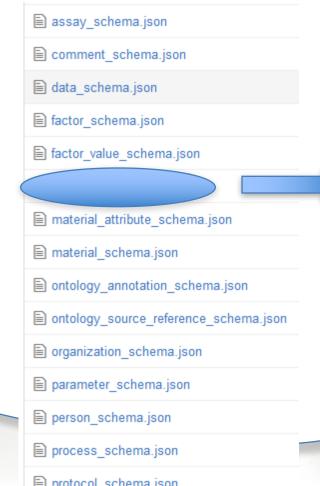
- Developed by S.Sansone group (University of Oxford) and collaborators
- Python based **ISA** API library
- New data format based on JSON describes the ISA experimental graph
- Full support of ISA-TAB (released ISA-JSON v.1)
- More efficient data storage than the TAB delimited
- New extended ISA v.2 (under development)



23 November 2016







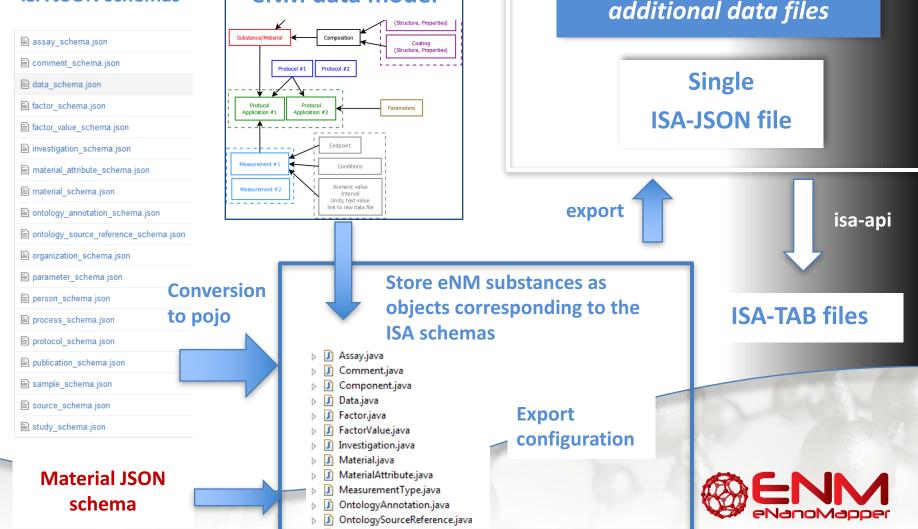

10 >

People

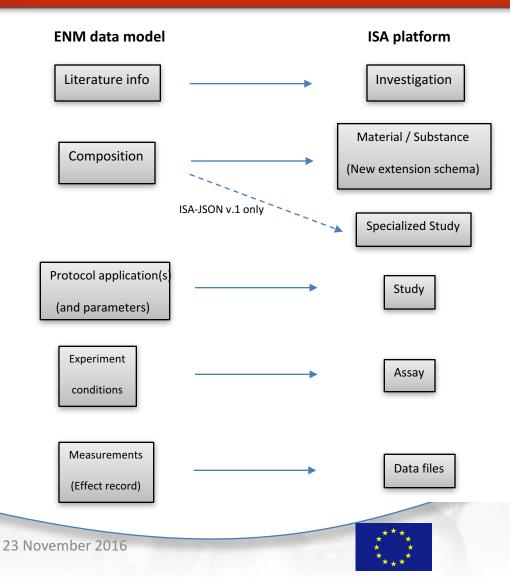
## **ISA-JSON** schemas






```
"$schema": "http://json-schema.org/draft-04/schema",
"title" : "ISA investigation schema",
"description" : "JSON-schema representing an investigation in the ISA model",
"type" : "object",
"properties" : {
    "identifier" : { "type" : "string" },
    "title" : { "type" : "string"},
    "description" : { "type" : "string"},
    "submissionDate" : { "type" : "string", "format" : "date-time"},
    "publicReleaseDate" : { "type" : "string", "format" : "date-time"},
    "commentCreatedWithConfiguration" : {
        "$ref": "comment_schema.json#",
        "name": "Created With Configuration"
    },
    "commentLastOpenedWithConfiguration" : {
        "$ref": "comment_schema.json#",
        "name": "Last Opened With Configuration"
    },
    "ontologySourceReferences" : {
        "type" : "array",
        "items" : {
            "$ref": "ontology_source_reference_schema.json#"
    },
```

**isa**tools


## eNanoMapper ISA-JSON export

eNM data model

#### **ISA JSON schemas**



# eNanoMapper – ISA mapping



Workflow

- The ISA JSON schema is used to generate Java classes (next slide)
- The ISA Java classes correspondence to the eNanoMapper data model (this slide)
- The data is loaded into eNanoMapper data model
- Converted into ISA model
- Exported into ISA-JSON
- ISA-JSON can be

converted to ISA-TAB



# ISA (v.1) Java classes

- > 🚺 Assay.java
- 👂 🚺 Comment.java
- 🔈 🚺 Component.java
- 🖻 🚺 Data.java
- J Factor.java
- J FactorValue.java
- J Material.java
- D MaterialAttribute.java
- > J MeasurementType.java
- D OntologyAnnotation.java
- I OntologySourceReference.java
- D Organization.java
- > 🚺 Parameter.java
- 🔉 🚺 Person.java
- Process.java
- D Protocol.java
- D Publication.java
- > 🚺 Role.java
- > J Sample.java
- Source.java
- J TechnologyType.java
- > 🚺 Value.java

#### Investigation.java

- G Investigation
  - commentCreatedWithConfiguration
  - commentLastOpenedWithConfiguration
  - description
  - identifier
  - ontologySourceReferences
  - o people
  - publications
  - publicReleaseDate
  - studies
  - submissionDate
  - title

@JsonProperty("identifier")
public String identifier;
@JsonProperty("title")
public String title;
@JsonProperty("description")
public String description;
@JsonProperty("submissionDate")
public Date submissionDate;
@JsonProperty("publicReleaseDate;
public Date publicReleaseDate;

@JsonProperty("commentCreatedWithConfiguration")
public Comment commentCreatedWithConfiguration;
@JsonProperty("commentLastOpenedWithConfiguration")
public Comment commentLastOpenedWithConfiguration;
@JsonProperty("ontologySourceReferences")
public List<OntologySourceReference> ontologySourceReferences = new A
@JsonProperty("publications")
public List<Publication> publications = new ArrayList<Publication>();
@JsonProperty("people")
public List<Person> people = new ArrayList<Person>();
@JsonProperty("studies")
public List<Study> studies = new ArrayList<Study>();



#### public class Study {

@JsonProperty("identifier") public String identifier; @JsonProperty("title") public String title; @JsonProperty("description") public String description; @JsonProperty("submissionDate") public Date submissionDate; @JsonProperty("publicReleaseDate") public Date publicReleaseDate; @JsonProperty("publications") public List<Publication> publications = new ArrayList<Publication>(); @JsonProperty("people") public List<Person> people = new ArrayList<Person>(); @JsonProperty("studyDesignDescriptors") public List<OntologyAnnotation> studyDesignDescriptors = new ArrayList<Ontolo @JsonProperty("protocols") public list Protocols protocols - new Arraylist Protocols():

#### 23 November 2016

- Study.java
  - Study
    - assays
    - description
    - identifier
    - people
    - processSequence
    - protocols
    - publications
    - publicReleaseDate
    - samples
    - sources
    - studyDesignDescriptors
    - submissionDate
    - title

enanomapper <b>/ isa-api</b> orked from ISA-tools/isa-api	
> Code  1 Pull requests 0	🛄 Projects 0 💷 Wiki
anch: master - isa-api / isatoo	ols / schemas / isa_model_version_1_0_schemas / material /
is branch is 18 commits ahead, 2	commits behind ISA-tools:master.
ntk73 Added new constituent pro	operties: characteristics and ontologyAnnotat •••
constituent_schema.json	Added new constituent properties: characteristics and ontologyA
mcm_material_schema.json	Added new constituent properties: characteristics and ontologyA
Contributing new	JSON schema corresponding to ISA-TAB-Nano

### **ISA-JSON** material schema

```
$schema : http://json-schema.org/draft-04/schema#
  title : Material
  description : Definition of Material (or Substance)
  type : object
▼ properties {14}
   ▶ @id {2}
   IotIdentifier {1}
     name {2}
     sourceName {1}
    root {2}
   description {1}
   synthesis {1}
   designRationale {1}
    intendedApplication {2}
     characteristics {2}
     mcmType {2}
     chemicalName {2}
    dataFiles {2}
       23 NOVELLINEL ZOTO
```

```
"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Constituent",
"description": "Definition of a constituent of a material or another
  constituent".
"type": "object",
"properties":{
  "@id": { "type": "string", "format": "uri" },
  "name": {
    "type": "string",
    "description": "Constituent name"
  "role": { "type": "string" },
  "description": { "type": "string" },
  "synthesis": { "type": "string" },
  "linkages":{
    "type": "array",
    "items": {
      "type": "object",
      "properties": {
        "constituent": {"type": "string", "format": "uri" },
        "linkageType": {"type": "string" }
  "characteristics" : {
    "type" : "array",
    "items" : {
      "$ref": "material attribute value schema.json#"
  "ontologyAnnotation" : {
    "$ref": "ontology annotation schema.json#"
```

### Data export: ISA-JSON, RDF, etc.

-	Home	Search 🔻	Data collections V D	ata uplo	ad ▼ For developers ▼ Help ▼		
i ) <u>Bunc</u>	dles				Name	Search	
lanoma	aterial bundles Dowr	load Help		-			
Showin	g 9 bundles (1 to 9)					First Previo	us 1 Next Last
-	Bundle ID 🗘		Name 🗘	Ver \$	Description \$	Source \$	License & Maintainer 🗘
-	00000000-0000-0000-0000- 000000000001	<u>NanoWiki</u>		<u>v2</u>	Nanomaterials, physicochemical characterisations and toxicity data,	NanoWiki http://dx.doi.org/10.6084/m9.figshare.1330208 더	<u>License</u>
-	0000000001			<u>vz</u>	imported via NanoWiki RDF dump	http://dx.doi.org/10.0064/ins.ingshare.1330206	<u>http://orcid.org/0000-</u> 0001-7542-0286 ⊏*
	Details				Downlo at as		0001-7542-0286
	Substances (389)		Browse substances				
	Chemical structures (74)		Browse chemical structure	5	≥⊂ I Ball SDF CSV	JSON RDF JSONAD	
	Dataset Properties (7)		<u>Browse dataset</u> <u>Browse properties</u>		XLSX CSV	JSON RDF (SON-LD	
	00000000-0000-0000-0000- 000000000002	<u>OECD Harm</u> import test	onized Templates	<u>v1</u>	Demonstrate import of a nanomaterial and endpoints data form IUCLID5 *.i5z file	Multi-Walled Carbon Nanotubes (MWCNT), synthetic graphite in tubular shape	License
	0000000002	<u>import test</u>		VI	(OECD HT)	http://apps.echa.europa.eu/registered/data/dossiers/DISS- b281d1a0-c6d8-5dcf-e044-00144f67d031/AGGR-cd35254a-	www.ideaconsult.net
						7b90-4a1f-842d-7700c6a210e9 DISS-b281d1a0-c6d8-5dcf-	
	0000000-0000-0000-0000-		ona Fingerprinting		Demonstrates import, display and search	<u>e044-00144f67d031.html</u> & 10.1021/nn406018q	License
	0000000003		<u>Cellular Interaction of ver Nanoparticles</u>	<u>v1</u>	of coated Ag and Au nanoparticles with large number of physicochemical	http://pubs.acs.org/doi/abs/10.1021/nn406018g	NTUA
					characterisations data and biological responses. Serves as a test case for		
			common	d li	NanoQSAR (eNanoMapper WP4) modelling		
-					ne application: 10.1371/journal.pone.0127174		
		http://	ambit.sou	rce	forge.net/enanoma	pper/templates/con	vertor.h
	-					nttp://dx.ddi.org/10.1371/journal.pone.0127174	

eNanoMapper

# Data Import: EU NanoSafety Cluster Excel templates

Two types of Excel templates:

1) ISA-TAB Logic templates (NANoREG)

Not strictly following the ISA-TAB and ISA-TAB-Nano formats, designed around ISA-Tab-logic, i.e. structuring the data in investigation-study-assay related groups.

One sheet: many materials, one assay, both metadata and data; CC BY-SA 4.0 license

http://www.nanoreg.eu/media-anddownloads/templates/269-templatesfor-experimental-data-logging

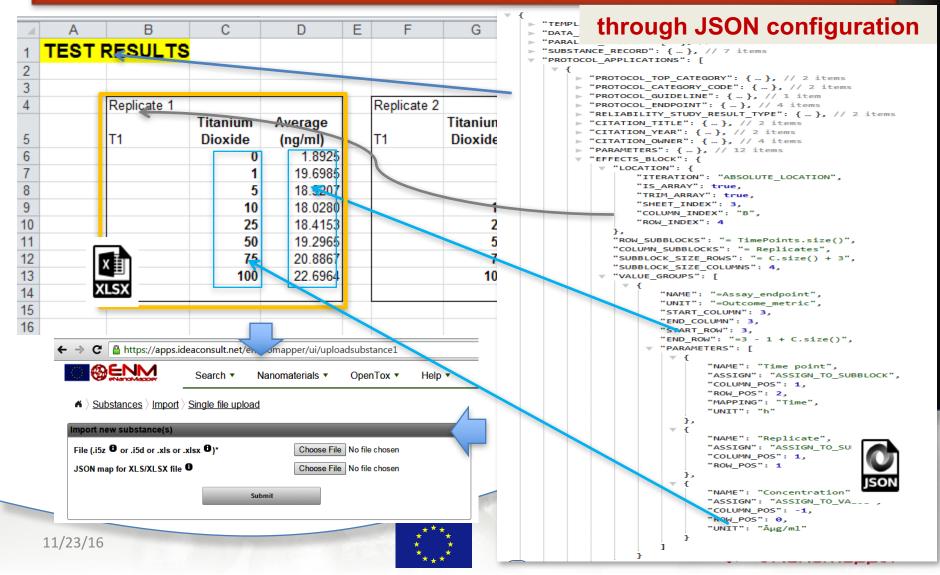
2) One material, one assay;

first sheet: metadata; next sheets: raw and processed data (used by several EU projects; many variations, not publicly available)

### Solution: A configurable Excel Parser for custom spreadsheets

JSON configuration mapping the Excel layout into the eNanoMapper data model

(next slide)


#### https://github.com/enanomapper/nmdataparser

Teen / A	MARINA W MARIN Text facility - L Work o Assay End-Point short overing TMDF - essey o	ab name etc: Divisionducted by: t description: ELE description form	12 - H0 vision of Mole JSA / TNP-o.r	elesse in cultur	a medium	H	1	J	K	L	М	N	0	P
B ESULTS						H	1	J	К	L	М	N	0	Р
				<b>D r</b>										
Replicate 1				D F										
				Replic	ate 2			Replicate 3	3			Replicate	4	
1	Titanium Dioxide	Average (ng/ml)		T1	Titaniun Dioxide			T1	Titanium Dioxide	Average (ng/ml)		T1	Titanium Dioxide	Average (ng/ml)
	0	1.892	25			0 -0.3425			0	2.189			0	9.502
	1	19.698	85			1 5.9887			1	2.474			1	8.808
														8.957
														8.306
									25	1.570			25	8.244
														9.507
														14.416
	100	22.696	64		10	0 7.2811			100	1.206			100	15.438
1		0 1 5 10 25 50 75	0 1.89 1 19.66 5 18.52 10 18.02 25 18.41 50 19.25 75 20.88	0 1.8925 1 19.6985 5 18.5207 10 18.0280 25 18.4153 50 19.2965 75 20.8867	0         1.8925           1         19.6985           5         18.5207           10         18.0280           25         18.4153           50         19.2965           75         20.8867	0         1.8925           1         19.6985           5         18.5207           10         18.0280           11         18.0280           125         18.415.3           25         01.92955           75         20.8867	0         1.8925         0         -0.3425           1         19.6985         1         5.9887           5         18.5207         5         5.7696           10         18.0280         10         5.011           25         18.4153         25         5.1602           50         19.2965         50         5.2292           75         20.8867         775         6.1564	0         1.8925         0         -0.3425           1         16.6985         1         5.9887           5         18.5207         5         6.7666           10         18.0280         10         5.3011           25         18.4153         225         5.1602           50         19.2965         50         5.2292           75         20.8867         75         6.1654	0         1.9925         0         -0.3425           1         19.6985         1         5.9887           5         18.5007         5         5.7666           10         18.0280         10         5.3011           25         18.4153         25         5.1602           50         19.2965         50         5.2922           75         20.8867         75         6.1664	0         1.8925         0         -0.3425         0           1         19.6985         1         5.9887         1           5         18.5207         5         5.7696         5           10         18.0280         10         5.3011         10           25         18.4153         25         5.1602         25           50         19.2965         50         5.2292         50           75         20.8867         75         6.1564         75	0         1.8925         0         -0.3425         0         2.189           1         19.6985         1         5.9887         1         2.474           5         18.507         5         7.696         5         2.002           10         18.0280         10         5.3011         10         1.786           25         18.4153         25         5.1602         25         1.570           50         19.2965         50         5.2292         50         1.735           75         20.8867         75         6.1564         75         1.290	0         1         1925         0         0         0.3425         0         2.189           1         1         16.985         1         5.9867         1         2.474           5         18.5207         5         5.7696         5         2.002           10         18.0280         10         5.3011         10         1.786           25         18.4153         25         5.1602         25         1.570           50         19.2965         50         5.2922         50         1.735           75         20.8867         75         6.1564         75         1.290	0         1         1925         0         0         0.3425         0         2.189           1         19.6385         1         5.9887         1         2.474           5         18.5207         5         5.7696         5         2.002           10         18.0280         10         5.3011         10         1.766           25         18.4153         225         5.1602         25         1.570           50         19.2965         50         5.2292         50         1.735           75         20.8867         75         6.1664         75         1.290	0         1.8925         0         -0.3425         0         2.189         0           1         19.6965         1         5.9867         1         2.474         1           5         18.5207         5         5.7696         5         2.002         5           10         18.0280         10         5.3011         10         1.786         10           25         18.4153         225         5.1602         25         1.570         225           50         19.2965         50         5.2922         50         1.735         50           75         20.8867         75         6.1564         75         1.290         75





# Mapping the spreadsheet content into the data model



# Automating the JSON configuration (under development)

#### ← → C ③ ambit.sourceforge.net/enanomapper/templates/index.html

🖊 🗋 | Data templates for nanc 🗙

Home P-CHEM In-vitro In-vivo Usage Database search

#### http://ambit.sourceforge.net/enanomapper/templates/

#### eNanoMapper data templates release

#### Physicochemical characterisation

9	R	A	Ŧ	U		w	X	Y	,	DF		AC LANRANC	THE	ĸ	N ^e		м	N	N	ΛK		444		arsurs		10
Assertant	att -	limita	Cellmod	Resting	lengers	Ihansi	Minimar	Marmu	Nember	Delayte	Lose fo	Loss ell	Stattern	Applied	Instants	Refrestry	Alsongt	Refrests	Necceli	Onleda	e Date en	abrid poin	ы. Г	deta personal	54	References to sep
					×c									v										<i></i>		
																			_			_			Π	
_																						-			H	
																_		_	_	_	-	_			H	
																		-							Ш	
																					_	1			Π	
																					-	-			H	

#### In-vitro assays

44							4	 AN	- 40
							Postia contributed concernat		
		Caluer markets of							
existed shows also be									
					water."				

#### In-vivo assays

44	A	~ ~	AL 14	AM	AN	40	14	AR	/A	A8
		ABAUTICAL PARK	METERS - FINAL EXPO	IN MER				PENATI		
doorcopy rollicitie	Nydrodynamic danatorin capacara mode	Pill in opposed and the	vicskrotises killsipi	Tanpostes 02 o	ecuatoriae Mile	roompy notifics	in Experiencian	Namber of microwederical polydromatic cayllascytus / 2000 caylloscy	Number of sensedoonatic systematics / 2000 crysteracy	Ridenaco ta sope
				10 mail						

#### NANoREG templates structure

The NANoREG templates are developed by JRC with collaboration with FP7 NANoREG project partners and released under open license at http://www.nanoreg.eu/media-and-downloads/templates.

Within eNanoMapper project (WP3 Database) the templates are analysed, fields cleaned and JSON configuration files created. The number of unique terms in the templates is over 800.

The NANoREG templates are organized as one spreadsheet per assay, multiple NM can be entered as rows. One Excel file may contain more than one assay, measuring the same endpoint. The metadata is organised in several groups:

#### About

The Excel templates are automatically regenerated based on fields defined in the NANOREG templates. The generation process includes cleaning of the JRC fields and facilitates the automatic generation of JSON configuration files, necessary to enable import into an eNanoMapper database instance

While not strictly following the ISA-TAB and ISA-TAB-Nano formats, the NANOREG templates have been designed around ISA-Tab-logic, i.e. structuring the data in investigation-study-assay related groups.

See more about

- ISA-TAB and the new ISA-JSON here
- New (Nano)Material schema for ISA-JSON
- How to convert Excel data files into ISA-JSON or RDF.
- How to import into eNanoMapper database instance.
- How the conversion works
- UNDER DEVELOPMENT <

- Extract all fields from NANoREG templates;
- Cleanup (typos, units), sync between different templates;
- Annotation;
- Generate the templates based on cleaned fields and JSON configurations;
- One-assay Excel template + JSON, ready for upload;

 Next step – dynamic generation



23 November 2016

# Finally – a bonus: command line XLSX- ISA-JSON/RDF convertor

Home P-CHEM In-vitro In-vivo

Usage Database search

#### http://ambit.sourceforge.net/enanomapper/templates/convertor.html

A command line application for converting between supported data formats with nanomaterial safety data.

• Download https://github.com/enanomapper/nmdataparser

Excel spreadsheets import requires a separate JSON configuration file. More details about the Excel parser. Predefined JSON configuration files for the NANoREG templates are provided next to each Excel file, e.g. INVITRO/GENOTOXICITY/COMET.

Supported formats

java	-jar enmo	onvertor	jar -L
	(RW)	xls	Excel (.xls) spreadsheet, requires JSON configuration file (option -x)
	(RW)	xlsx	Excel (.xlsx) spreadsheet, requires JSON configuration file (option -x)
	(RW)	json	AMBIT JSON
	(RW)	rdf	eNanoMapper RDF (based on BioAssayOntology RDF)
	(W)		isa ISA-JSON v1 (see https://github.com/ISA-tools/isa-api)
	(R)		NWrdf NanoWiki RDF (Semantic Media Wiki RDF export)

#### Examples

#### Converting NanoSafety Cluster Excel spreadsheets

- Example x1sx file INVITRO_VIABILITY_Trypanblue_TEST.xlsx
- Example json configuration file INVITRO_VIABILITY_Trypanblue.json

#### to ISA-JSONv1

java -jar enmconvertor.jar -i "INVITRO_VIABILITY_Trypanblue_TEST.xlsx" -j "INVITRO_VIABILITY_Trypanblue.json" -I xlsx -O isa -o "INVITRO_VIABILITY_Trypan blue_T EST.isa.json"

Result file (zipped) INVITRO_VIABILITY_Trypanblue_TEST.isa.json.zip





### Summary

- Open source database and web application
- Demo at <u>https://data.enanomapper.net</u>
- Import: Excel templates, RDF, OECD OHT, SQL
- Export: ISA-JSON, RDF, XLSX
- Enables distributed setup: many databases; search integration <u>https://search.data.enanomapper.net</u>
- Integration with data analysis tools
- Search tools: free text, chemistry, semantic
- More on ontology: NanoWG, Dec 8, by Maastricht U.







#### Questions?

# **THANK YOU!**





23 November 2016