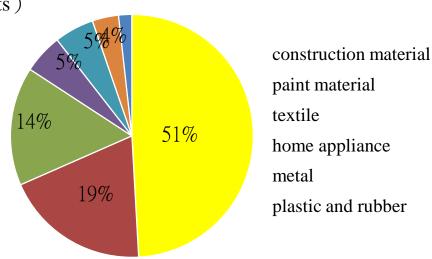
Taiwan's NanoMark system and related activities introduction

Mike Yao (Bin-Cheng Yao)

Center of Measurement Standards Industrial Technology Research Institute

More & More Nanotech-Enabled Products Entering the Market


Examples from NanoMark application data

• 55 total certified firms (2,715 products); 44 firms are still effective (2,454 products)

Category of Firms

- 30 construction material firms (2232 products)

- 12 paint material firms (30 products)
- 8 textile firms (27 products)
- 3 home appliance firms (14 products)
- 3 metal firms (10 products)
- 2 plastic and rubber firms (132 products)
- 1 other firms (1 products)

Need for Regulation for Nano Products!

Regulation efforts

European Union

2009 Acts: Cosmetic Regulation (EC No 1223/2009, which came into force in Jul 2013)

Regulatory Activities: Included Specific provisions for nanomaterials (definition, requirement for notification, labeling and reporting of nanomaterials).

2011 Acts: Food information to consumers regulation (EU Regulation 1169/2011), approved by the EC (July 2011) which applied from December 2014

Regulatory Activities: This regulation includes the requirement for labeling of ingredients in the form of nanomaterials (material plus word "nano" in brackets).

2012 Acts: Regulation (EC) No 1223/2009 (Article 13)

Regulatory Activities: Established the Cosmetics, Product Notification Portal (CPNP)

2013 Acts: EU Biocides Regulation

Regulatory Activities: Labeling (material plus word "nano" in brackets) and a separate evaluation of the risks deriving from nanomaterials used in various kinds of products (antifouling agents, biocides in building materials, and antimicrobial surfaces).

2015/2016 Acts: Regulation (EC) No 1223/2009 (Article 13)

EU Nano Register, REACH regulation and CLP regulation

Regulation efforts

USA

2011

Environmental Protection Agency (EPA)

Acts: Federal Insecticide, Fungicide and Rodenticide Act (FIFRA)

Regulatory Activities: EPA proposed a new approach that would consider any nanomaterial as a new active ingredient for the pesticide regulation (thus differentiating them from their macro-form).

2013

Environmental Protection Agency (EPA)

Acts: Toxic Substances Control Act (TSCA - the US regulatory provision for chemical substances

Regulatory Activities: Published a proposed Significant New Use Rules (SNUR) for 14 nanomaterials that were the subject of pre-manufacture notices (PMN). If issued in final the SNURs would require persons who intend to manufacture, import, or process new nanoscale materials based on the chemical substances designated for a Significant new use to notify EPA at least 90 days before commencing that activity and required to notify the risks

2014, 2015

Guidance documents issued

- •On June 24, 2014, FDA issued three final guidance documents related to the use of nanotechnology in regulated products, including cosmetics and food substances.
- •On August 5, 2015, FDA issued one final guidance document related to the use of nanotechnology in food for animals.

Regulation efforts

ASIA

Taiwan 2004 Voluntary Iran
2009
Mandatory if apply
government
support

Thailand 2011 Voluntary

Malaysia 2015 Voluntary

Other Nano-Certification Programs Available Worldwide: MNT Quality Mark, UK; Nanocertifica, Russia

Comparison between Nano-Certification Programs in Asian Countries

		NANO Verify, Malaysia	NanoMark, Iran	NanoMark, Taiwan	NanoQ, Thailand
1	Fee	All charges borne by the company	 USD 300-3,000 (depending on size of the company, and analyzing cost) 	Varies. <usd1,600 and<br="">other cost will be bared by the government</usd1,600>	All charges beared by the company
2	Validity	➤ 2 Year	1 Year. After first supervision, increase to 3 years	> 3 Year	> 2 Years
3	Measurement Criteria	> Size (1-100nm)	 Size (1-100nm) Improvement in properties (Except for nanomaterials) Reproducibility 	Size (1-100nm)Unique properties	 Size (1-100nm) Unique nanoscale- related functionality features
4	Instruments for size characterization	> SEM > FESEM > XRD > Raman > TEM	> TEM > DLS > XRD > FESEM / SEM > ICP / AAS	DLS SEM FESEM XRD Raman TEM	 DLS SEM Morevarious techniques
5	Standards used	ISO methods and other international standard methods	 ISO-TS 80004 - 2010 ISO-TS 12805 - 2011 ISO-TR 13014 - 2012 More than 30 National Standards 	As references from ISO, JIS, CNS and the ASTM, 52 National testing standards and testing methods have been established	ISO methods and other international standard methods
6	Incentives/ facilitation provided	 Assistance for commercialization 	 Facilitation for commercialization Business Training , 	 Assistance for commercialization 	> None

Source: nanoverify

Why Certification Mark (Labeling)

Protect Consumers : Avoid waste money

Protect Good Companies: Eliminate unfair

competitions

between good and

bad products

☐ Increase Public Trust : Facilitate healthy

development of

nanotechnology

☐ Facilitate Trade : Stimulate economic

growth

Taiwan Nano Mark System

Introduction

History & Motivation

Policy

- National Nano Project development(2003)
- Legislators Requirements
- Directives of Ministry of Economic Affairs(2004)

Consumer

- To protect the interests of consumers
- To avoid confusion for consumers

Economic

- To encourage vendors' sustainable operation
- To enhance industry' competitiveness

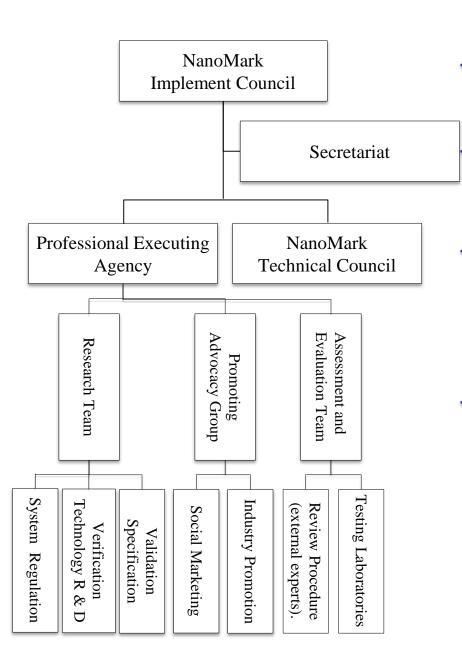
Nano Mark Logo

Implications:

- 1. Round shape represents the feel of nano particle.
- 2. ∞ symbolizes the unlimited application of nanotechnology.
- 3. Auxiliary English text expresses the verification and international link
- 4. Logo color will be set according to the product category.

The Products Selection Criteria for Nano Mark

Product items criteria


- Commercially available products, domestic manufactured products will be priority.
- Existing test method, testing laboratories, and technical experts.
- Products with obvious safety concern will not allowed for application.

Vendor criteria

- 1. Products possess nanometer size material and nano-enabled function.
- 2. Registered Company under the law of Taiwan.
- 3. Company with third party quality verification certificate.

Tasks of the Nano Mark System (2004-2016)

Tasks of NanoMark Implement Council Executive board of nanoMark, system coordination, promotion, implementation issues.

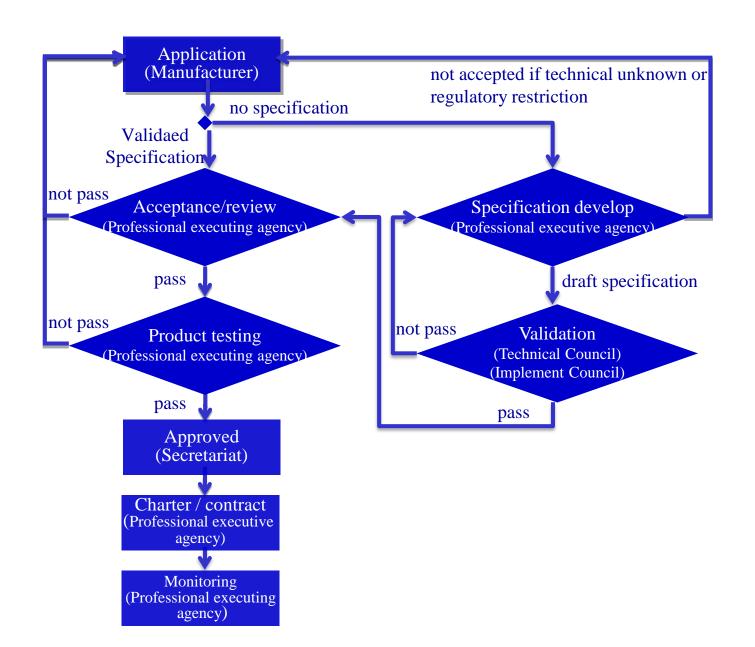
Tasks of Secretariat

Staff operations, technical member appointment, managing the grant/terminate of nanoMark, managing operation of professional executing agencies and technical council.

Tasks of NanoMark Technical Council

Examining product items, specifications and test methods, managing testing laboratories application/registration, investigating technical abnormal event/other technical issues.

Tasks of Professional Executing Agency


Assessment and evaluation team: execution of vetting job

External expert members: application case review

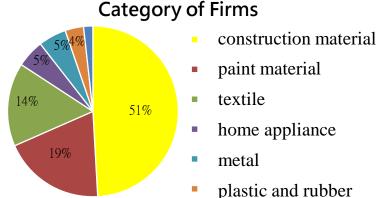
The research team task: to develop validation and verify specification, research new areas for the appropriateness of acceptance, verify demands, legality and technical issues.

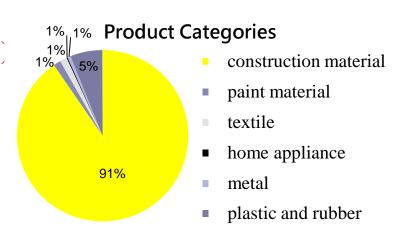
Promote advocacy group: promoting the work to community marketing, to promote the marketing to various industries.

Review/verification Process of nanoMark

Certified Products Examples

Textiles, Building Materials, Paint, Communication/Computer/ Consumer, Plastics & Rubber, Hardware/Metal, Others

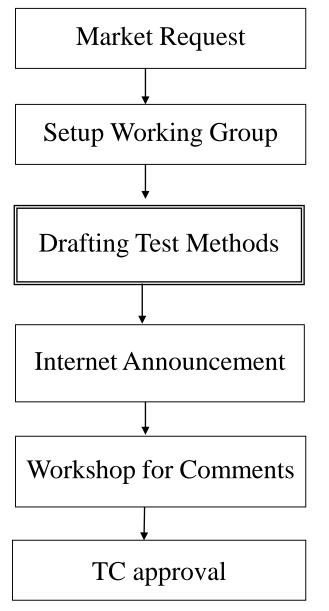



http://www.nanomark.org.tw/Eng/Product/

Current Condition of nanoMark

(Year 2004 to 2016)

- 52 published product certification standards
- 55 total certified firms (2,715 products); 44 firms are still effective (2,454 products)
 - 30 construction material firms (2232 products)
 - 12 paint material firms (30 products)
 - 8 textile firms (27 products)
 - 3 home appliance firms (14 products)
 - 3 metal firms (10 products)
 - 2 plastic and rubber firms (132 products)
 - 1 other firms (1 products)
- 14 Registered test laboratories (87 tests)
 - 7 nano sizing
 - 5 anti bacterial
 - 10 others



Taiwan Nano Mark System

Testing Standards

Procedure to Draft Test Methods for Nanoproducts

Select market preference of nanoproduct

Invite 3~5 experts to form a working group, feasibility discussion

- 1. collecting existing methods/standards
- 2. drafting one or more test standards
- 3. practicing draft standards
- 4. suggest criteria for NanoMark

Internet call for comments: www.nanomark.itri.org.tw

Comments from targeted companies

TC discussion and approval, public announcement

Example(1)

photocatalyst (UV & Visible light) Anti-bacterial Tiles

- How many bacteria have to be tested?
 - ♦ Representative → Representative
 → Safe / easy to handle
 Staphylococcus aureus : ATCC 65389, BCRC 10451
 Escherichia Coli : ATCC 8739, BCRC 11634
- How effective anti-bacterial tiles should be?
 - ♦ Achievable
 - ♦ Testing Protocol (conditions, raw materials and/or final products)

- ♦ Top 30~50% Companies
- What should be specified on the product package?
 - ♦ How to use
 - Where
 - Who
 - How (application methods, maintenance, etc.)
 - ♦ Reliability

Example(1)

photocatalyst (UV & Visible light) Anti-bacterial Tiles

Tiles: N041 (900mm x 1800mm) (CERABO)

N04590 (450mm x 900mm) (Ohayo)

Who: Construction Companies, General Publics

Where: Indoor (eg. toilet), Outdoor

How: • Adhesion to fix on the substrate

• Wet cloth to wipe if dirty

Reliability: real case (>3 years)

Wall Tile (45 x 90 cm) Floor Tile (90 x 90 cm)

Test:

Nano Scale: raw material, 40nm

Product, confirmed to have TiO₂

Anti-bacteria : S. aureus 99.99%

> E. Coli 99.99%

S. aureus 99.99%

97.83% E. Coli

365nm UV, 0.2mW/cm²/24 hrs

543nm, 1000 lx / 24 hrs

Quality System: ISO9001 (Certification: 4XBY008-04)

Safety Issue: CNS 3298

Example(1)

- Photocatalyst (UV & Visible light) Anti-bacterial Tiles

Tiles: T627* (Champion Building Materials Co.)

Who: Construction Companies, General Publics

Where: Outdoor

How: • Adhesion to fix on the substrate

• Wet cloth to wipe if dirty or clean by rain

Reliability : > 5 years, company guarantee

Test:

Nano Scale: raw material, 32nm

Product, confirmed to have TiO₂

Anti-bacteria: S. aureus 99.99%

E. Coli 99.99%

 $365 \text{nm UV}, 0.2 \text{mW/cm}^2 / 24 \text{ hrs}$

Quality System: ISO9001 (Certification: 4XBY013-04)

Safety Issue: CNS 9742

抗菌陶瓷面磚

Example(2)

Anti-bacterial Socks

- How to define anti-bacteria without confusing consumer
 - → de-odour purpose, not to cure skin diseases e.g. athlete's foot
- How many bacteria have to be tested
 - **♦ Representative**
 - **♦ Safe/easy to handle**
 - ♦ National standard (CNS 14945)

Klebsiella Pneumoniae: ATCC 4352

- **♦**Achievable
- **♦Test Protocol (conditions, raw materials and final products)**
- **♦Top 50% companies**

		Companies (local & abroad)					
Water Wash times	Anti-bacterial Socks	Α	В	С	D	E	F
0	ATCC 6538P	99.8	99.9	< 0	> 99.9	> 99.9	< 0
	ATCC 4352	> 99.9	99.5	< 0	> 99.9	99.4	< 0
20	ATCC 6538P	> 99.9	98.8		97.3	80.2	
	ATCC 4352	> 99.9	89.4		< 0	89.3	

Example(2) Anti-bacterial Socks

□Safety Issues

-What's the criteria

National Standard: CNS 14945

- > Skin Irritation Test
- ➤ Oral Acute Toxicity Test

Anti-bacterial Socks	Company A
Skin Irritation	PII=0, no irritation
Oral Acute Toxicity	No abnormal phenomena or toxic response observed

-Leaching Test One Sock in 6.8L H₂O/50°C/180rpm/12min

Water sample

Atomic Absorption Analysis

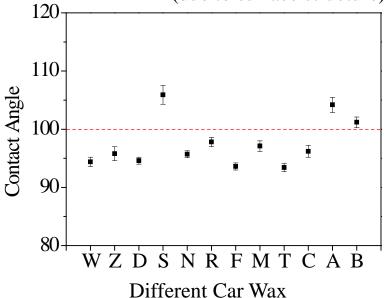
Ag < 0.01 ppm

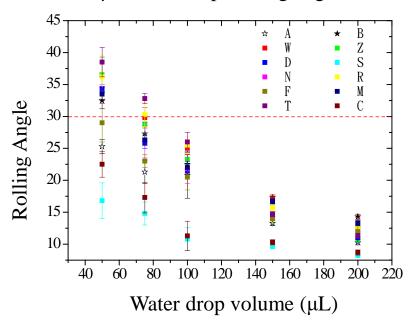
(Taiwan EPA regulation : drinking water, Ag < 0.05 ppm)

Example(3) Hydrophobic Car Wax

How to define "hydrophobic"?

Is "contact angle" enough?


How high the contact angle should be?


16 Performance Tests needed in ASTMD 3836-94 (reapproved1999)

• Contact Angle: 4µL Water drop, CA>100°

(due to surface structure)

Water drop rolling angle
 --50 μL water drop, rolling angle < 30°

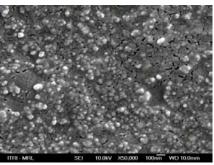
Example(3)Hydrophobic Car Wax

• Water blot area <40%

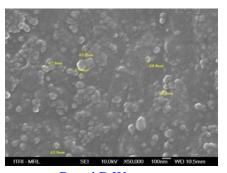
Water blot area at sliding angle 35° (50 mL/min)

 $5:0\sim20\%$, $4:21\sim40\%$, $3:41\sim60\%$, $2:61\sim80\%$, 1:>81%

• Reliability: anti-washing (ASTMD 2486)


 $> 1000 \text{ times, CA} > 100^{\circ}$

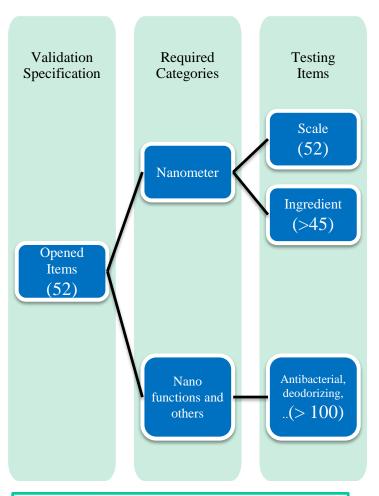
	A	5
	В	4
×	W	3
Wax	Z	3
Different Car Wax	D	4
it C	S	5
ren	N	3
iffe	R	4
Ď	F	3
	M	2
	T	2
	С	5


CA		Brand		
Washing times		Α	В	
Top water	0	104.2±0.9	103.6±0.3	
Tap water	1000	104.8±1.0	104.0±0.6	
VAP'41 Ladamaran	0	105.5±0.2	102.4±1.0	
With detergent	1000	102.4±0.4	101.0±5	

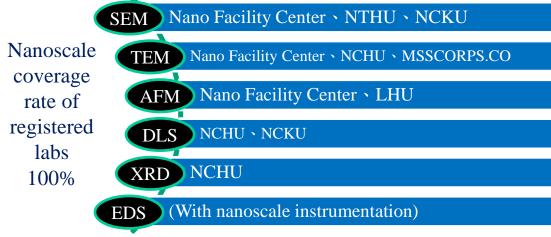
• Nanoscale: nanostructure revealed on car body surface after waxing

SEM Analysis

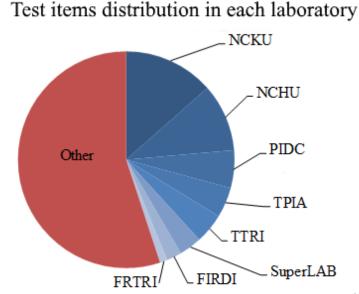
Brand A Wax



Brand B Wax


Taiwan Nano Mark System

Testing Laboratory


Testing services of the registered laboratories

Total of 14 registered laboratory ~ 200 test items

Nano function coverage rate of registered labs ~50%

SEM: Scanning Electron Microscopy

TEM: Transmission Electron Microscopy

AFM: Atomic-Force Microscopy DLS: Dynamic Light Scattering

XRD: X-Ray Diffraction

EDS: Energy-Dispersive Spectrometry

Bioresource Collection and Research Center, Food Industry Research and Development Institute (Lab. Code: 0001)

No.	Test Item	Test Method
01	Antibacterial rate of staphylococcus aureus and E. coli	JIS Z2801

Common Nano Facility Laborotory, Industrial Technology Research Institute (Lab. Code: 0004)

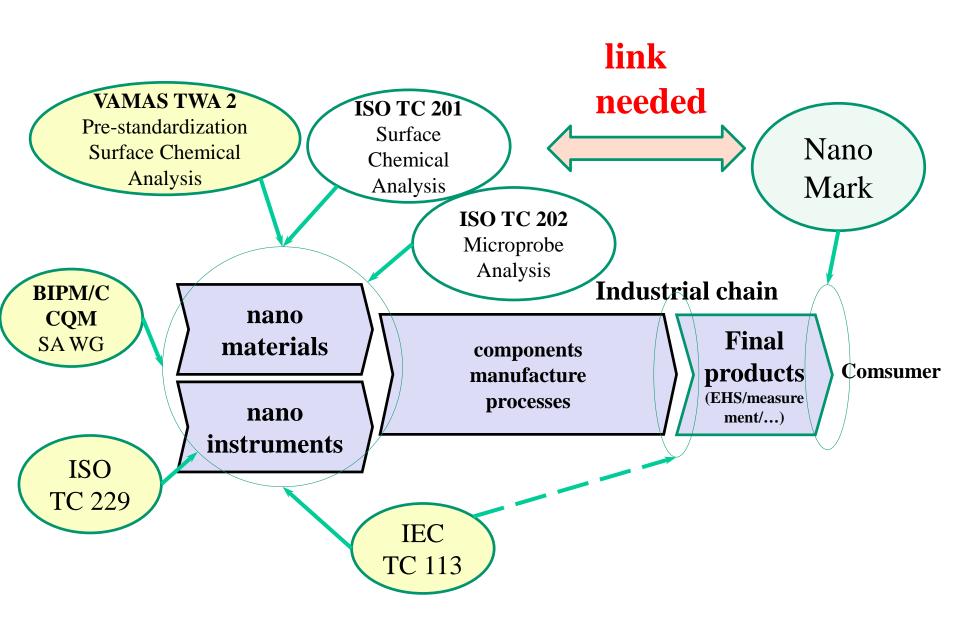
No.	Test Item	Test Method
01	Nanoscale	SEM, TEM, SPM protocols

Center for Micro/Nano Science and Technology, National Cheng Kung University (Lab. Code: 0006)

No.	Test Item	Test Method
01	Nanoscale powder	DWI-T-S1(SEM) (10 nm to 700 nm) ISO 13321(DLS) (20 nm to 1000 nm)
02	Antibacterial rate of klebsiella pneumoniae & staphylococcus aureus	JIS Z2801 · ISO 22196
03	Skin irritation	Rabbit skin irritation test inspection procedures - textiles, cosmetics, medical equipment and chemical reagents
04	Acute oral toxicity	Acute oral toxicity test (limit method) inspection procedures - medical equipment, cosmetics, food, chemicals and textiles

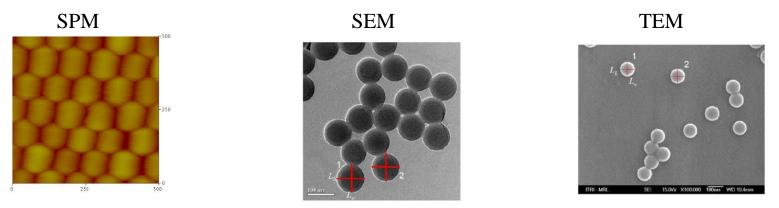
Nano-material Measurement Laboratory, National Chung Hsing University (Lab. Code: 0007)

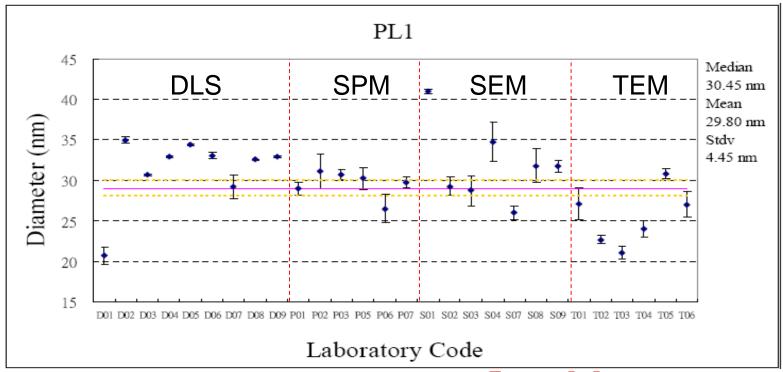
No.	Test Item	Test Method
01	Nanoscale	DLS, TEM
02	Antibacterial rate of staphylococcus aureus and E. coli	JIS Z2801 \ ISO 22196
03	Deodorization rate (acetaldehyde)	TN-001
04	Deodorization test	TN-009 \ TN-010
05	Contact angle	TN-008 · TN-12
06	Residual contaminants	TN-008 · TN-12
07	Decomposition test of methylene blue	TN-031


Certification and test laboratory, Footwear & Recreation Technology Research Institute (Lab. Code: 0009)

No.	Test Item	Test Method
01	Abrasion resistance	CNS 12915

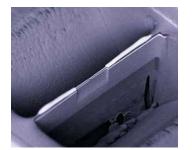
Research and Development Laboratory, Taiwan Paint Industry Association (Lab. Code: 0012)


No.	Test Item	Test Method
01	Adhesion	CNS10757
02	hardness	CNS10757
03	Scrub resistance test	CNS10757
04	Gloss test	CNS10756
05	Abrasion test	CNS10757
06	Salt spray test	CNS11607
07	QUV weathering test	CNS12147 QUV
08	Alkali test	CNS10757

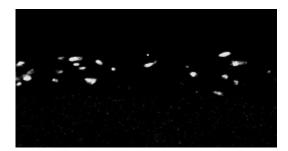

Standards activities involved

Early testing laboratories comparison

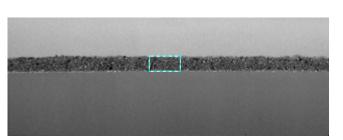
Example testing laboratory measurement


1st example: APEC Nano product measurement comparison

Selected comparison products: self cleaning glass


Nano characteristics

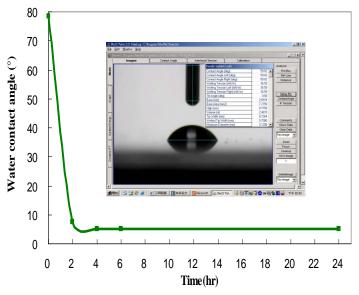
The self cleaning composition and size measurement of photo catalysis glass


• Test Instrument: TEM (dark field) or others

Sample preparation with FIB

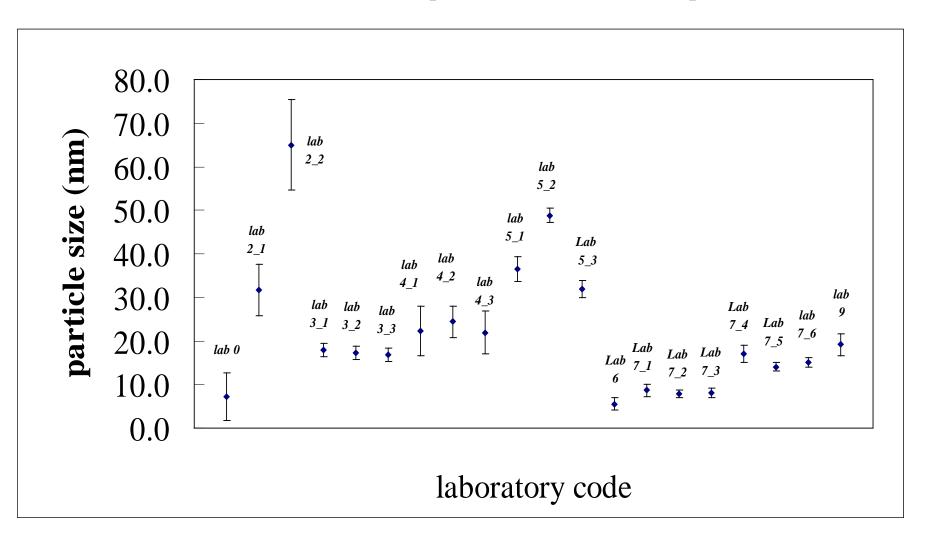
Size distribution (Dark field results)

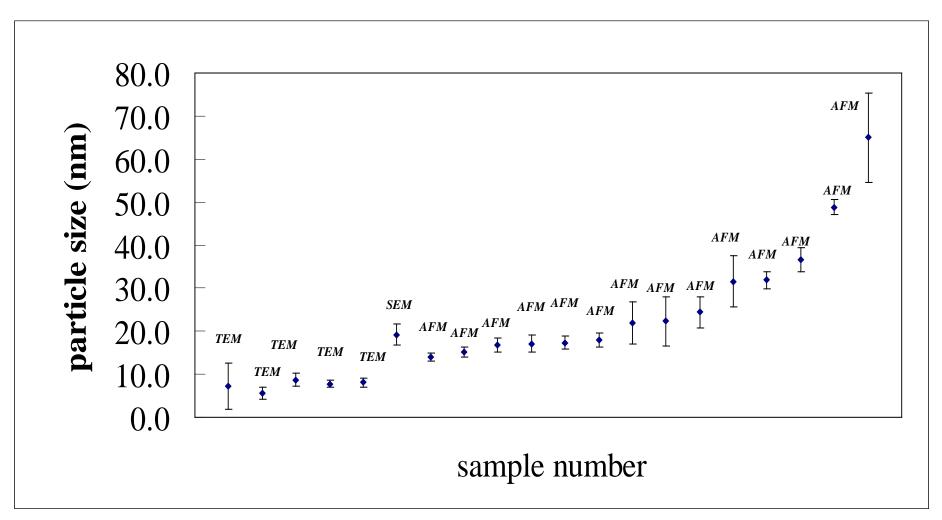



TiO₂ thickness

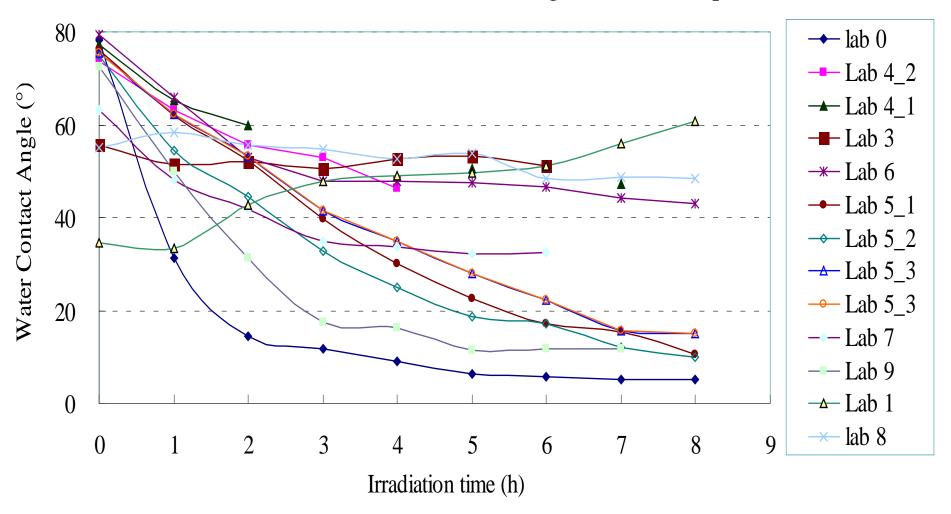
Functional characteristics

The self cleaning efficiency measurement of photo catalysis glass


- Glasses: B270-Superwite, 2 mm thickness
- Test method: similar to JIS R 1703-1
- TiO₂ type : Anatase
- Surface coating of oil or acid: immersion plating
- Self cleaning efficiency: contact angle <10° (24 h)


How different is the data between labs.?

Nano characteristics(particle size) from nano product


How different is the data between labs.?

Nano characteristics(particle size) from nano product

How different is the data between labs.?

functional characteristics(contact angle) from nano product

Recent testing laboratories comparison

Participants and Nanoparticles

APMP.L-S5,

Length, Dimensional Metrology, Nano particles measurements

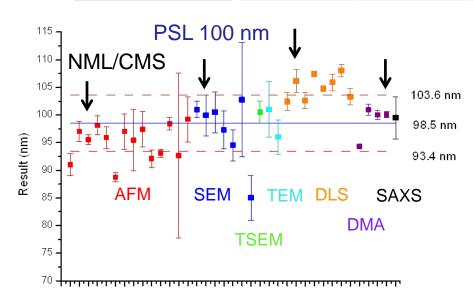
Joint Comparison with TCMM in APMP (draft B report publishing soon)

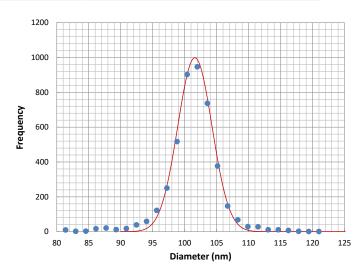
Pilot laboratories

CMS/ITRI, NMIJ

Participants |

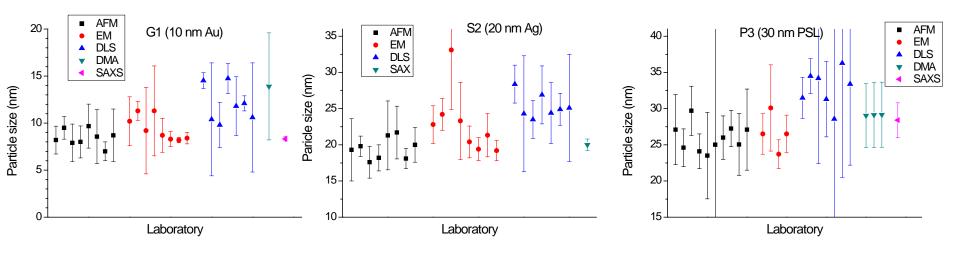
CENAM, CMS, DFM, INMETRO, INRIM, KRISS, LNE, METAS, NIM, NIMT, NMIA, NMISA, NMIJ, PTB

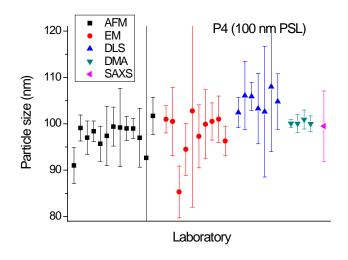

Methods

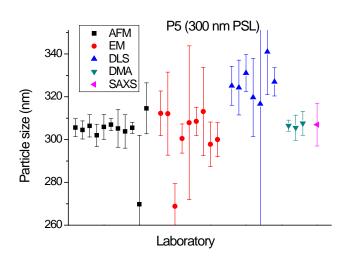

AFM, SEM, TEM, DLS, DMA, XRD, SAXS

No.	Materia1	Nominal size [nm]	Volume [mL]	Number concentration [particles/mL] ¹	Manufacturer	
G1	Nano Gold	10	2	5.7×10 ¹²	BBInternatio	what of
S2	Nano Silver	20	2	4.0×10 ¹¹	nanoCompo	MEJ Fakabula, Kelji met: DMA
P3	Polystyrene latex	30	1	7.0×10 ¹⁴	ICD	2 2 3 2 2
P4	Polystyrene latex	100	1	1.8×10 ¹³	JSR	
P5	Polystyrene latex	300	1	7.1×10 ¹¹	JSR	

Measurement Results

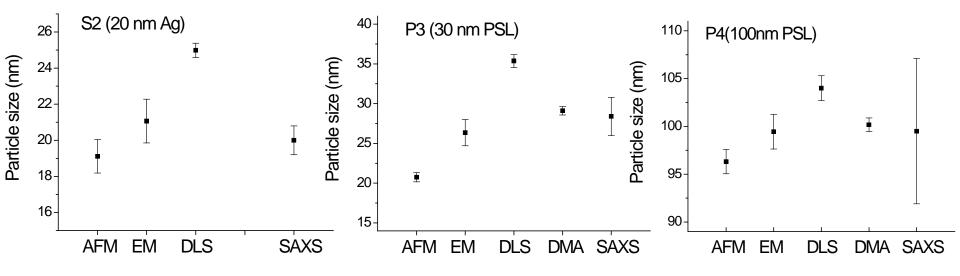

Materials *	Gold 10 nm	Silver 20 nm	PSL** 30 nm	PSL 100 nm	PSL 300 nm
AFM	8	8	10	14	12
EM	8	8	4	10	9
DLS	8	8	8	8	8
DMA	2	0	3	4	4
SAXS	1	1	1	1	1

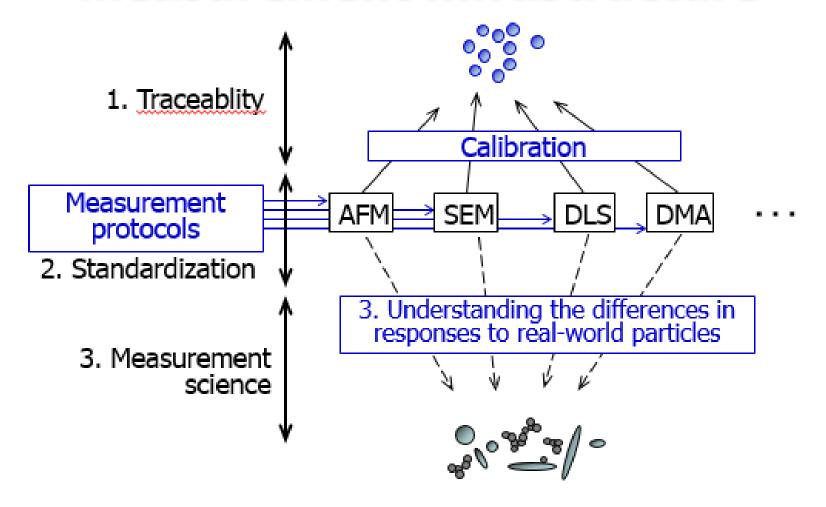




P4 particles obtained by the TSEM at PTB (solid circles), and the Gaussian distribution fitted to the experimental data (solid curve).

Whole data reported in Draft A2




Draft A indicated that:

- □ AFM tends to give smaller particle sizes than the other methods
- □ DLS tends to give larger particle sizes than the other methods

- Globe Reference Values include all methods
- Method Dependent Reference Values

Scheme to establish harmonized measurement infrastructure

☐ Different measurands for different measurement methods will not help establish a harmonized measurement infrastructure for nanoparticles

Some Summaries from Workshops

#Definition of the measurand (from 2014):
 We intend to measure the core diameter of nanoparticles.
 The measurand is the "mean equivalent diameter of particles of a specific material."

This draws on the definition of equivalent diameter from ISO TS 80004-6:2008, clause 3.1.5 and on particle from ISO TS27687:2008, clause 3.1. We think that it is important to include 'equivalent' in the description, as we make the assumption that the particles are spherical. We also feel that it is important to make clear the distinction that we are measuring the mean diameter of a population of particles, not just a single particle.

2. #Definition of terms (from 2015):
We decided to use two terms 'method-dependent reference value' and 'global reference value.'

Acknowledgements above comparison slides

- □ The slides for the data analysis are referred to the presentation slides from Dr. K. Ehara (NMIJ) and Ms. H.L. Lin (CMS).
- □ The data analysis for technical parts are provided from the Colleagues in CMS/ITRI, colleagues in NMIJ, all participants in APMP.L-S5 and Dr. Dagata's group in NIST.

Outlook

Global Collaborations -> Consistent Criteria

→ Test lab. Recognitions → Mutual Recognitions

Taiwan 2004 Voluntary Iran 2009 Mandatory if apply government support Thailand 2011 Voluntary

Malaysia 2015 Voluntary

Accelerate Good Nanoproduct Development

Thanks for Your Attention!

