Skip to main content
The NCI Community Hub will be retiring in May 2024. For more information please visit the NCIHub Retirement Page:https://ncihub.cancer.gov/groups/ncihubshutdown/overview
close

Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas

View Resource (HTM)

Licensed according to this deed.

Published on

Abstract

Alonso MM, Diez-Valle R, Manterola L, Rubio A, Liu D, Cortes-Santiago N, Urquiza L, Jauregi P, Lopez de Munain A, Sampron N, Aramburu A, Tejada-Solís S, Vicente C, Odero MD, Bandrés E, García-Foncillas J, Idoate MA, Lang FF, Fueyo J, Gomez-Manzano C. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS One. 2011; 6(11):e26740. Epub 2011 Nov 1.  PMCID: PMC3206066

Abstract

We undertook this study to understand how the transcription factor Sox2 contributes to the malignant phenotype of glioblastoma multiforme (GBM), the most aggressive primary brain tumor. We initially looked for unbalanced genomic rearrangements in the Sox2 locus in 42 GBM samples and found that Sox2 was amplified in 11.5% and overexpressed in all the samples. These results prompted us to further investigate the mechanisms involved in Sox2 overexpression in GBM. We analyzed the methylation status of the Sox2 promoter because high CpG density promoters are associated with key developmental genes. The Sox2 promoter presented a CpG island that was hypomethylated in all the patient samples when compared to normal cell lines. Treatment of Sox2-negative glioma cell lines with 5-azacitidine resulted in the re-expression of Sox2 and in a change in the methylation status of the Sox2 promoter. We further confirmed these results by analyzing data from GBM cases generated by The Cancer Genome Atlas project. We observed Sox2 overexpression (86%; N = 414), Sox2 gene amplification (8.5%; N = 492), and Sox 2 promoter hypomethylation (100%; N = 258), suggesting the relevance of this factor in the malignant phenotype of GBMs. To further explore the role of Sox2, we performed in vitro analysis with brain tumor stem cells (BTSCs) and established glioma cell lines. Downmodulation of Sox2 in BTSCs resulted in the loss of their self-renewal properties. Surprisingly, ectopic expression of Sox2 in established glioma cells was not sufficient to support self-renewal, suggesting that additional factors are required. Furthermore, we observed that ectopic Sox2 expression was sufficient to induce invasion and migration of glioma cells, and knockdown experiments demonstrated that Sox2 was essential for maintaining these properties. Altogether, our data underscore the importance of a pleiotropic role of Sox2 and suggest that it could be used as a therapeutic target in GBM.

Acknowledgments

This work was supported by an institutional grant from The University of Texas MD Anderson Cancer Center (to C.G.M.), a grant from the Alex Lemonade Stand Foundation, and Ramón y Cajal Contract from the Spanish Ministry of Education and Science (to M.M.A.), and a National Cancer Institute Cancer Center Support Grant (CA16672; to The University of Texas MD Anderson Cancer). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Cite this work

Researchers should cite this work as follows:

  • Nahir Cortes (2016), "Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas," https://ncihub.cancer.gov/resources/1709.

    BibTex | EndNote

Tags