A Brief History of OpenTox

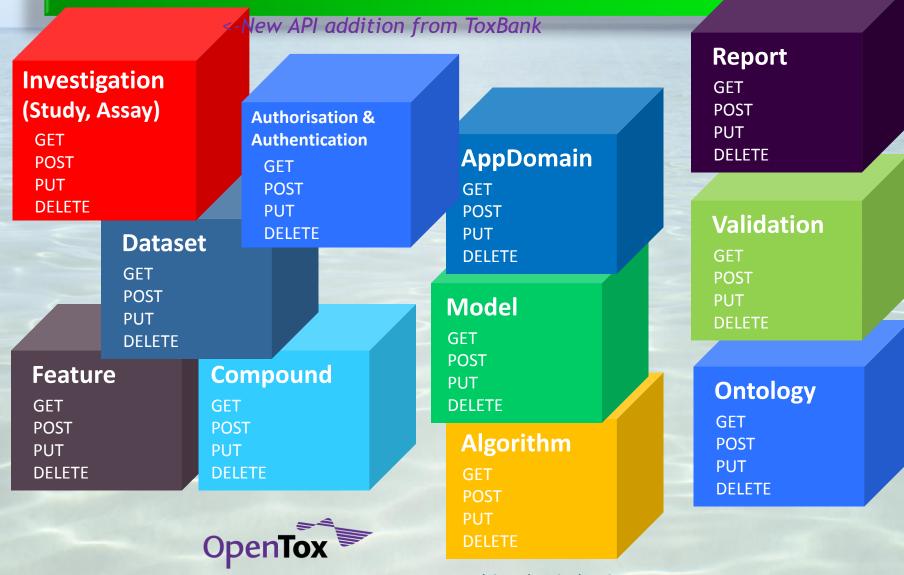
25 June 2015 Barry Hardy (Douglas Connect GmbH) Barry.Hardy@douglasconnect.com www.douglasconnect.com

Communities -> Collaboration -> Innovation

Overview

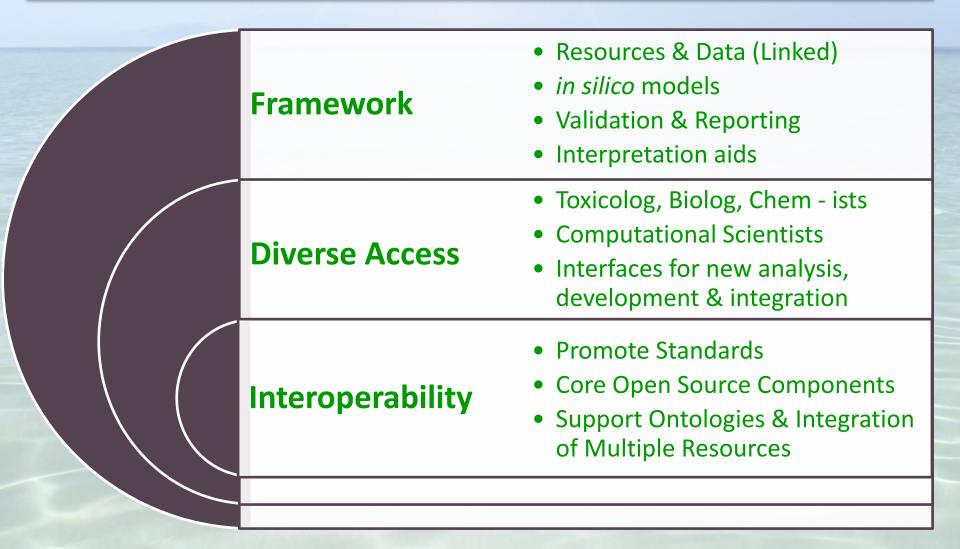
OpenTox Framework and Goals
 Use Cases & Applications
 Infrastructure Development
 Integrated Analysis
 Safety Assessment
 Non-Profit Association Formation & Activities
 Next Steps

Islands


Source: Baily Ed, U.S. Fish and Wildlife Service

Challenges to Integrated Resources & Applications

- Database silos
- Missing information
- Varying quality
- ↔Hard to integrate data
- ♦ Hard to integrate models
- No common framework


- Lack of standards
- Lack of validation
- Complex subject
- Application difficult
- Lack of transparency
- Interdisciplinary collaboration

OpenTox and Open Components and Standards

www.opentox.org/dev/apis/api-1.2

OpenTox is an Integrating Framework

OpenTox committed to creating a Semantic Web for Predictive Toxicology (*with its API 1.1 development in 2009***)**

Linked Data is a term used to describe the exposing, sharing, and connecting of data on the Semantic Web using: URIs a generic means to identify entities in the world HTTP a simple yet universal mechanism for retrieving resources RDF a generic graph-based data model with which to structure and link data

Linked Data needs:

- 1. Provision of a URI that describes a Data Resource
- 2. Use of HTTP to retrieve useful data from the URI
- 3. A Data Format described with standardised semantics (so relationships are enabled) e.g. **RDF**
- 4. Data should provide links to other Data (through URIs)

Linked Data approach can also be applied to other resource types e.g., for algorithms or models as done in OpenTox... Linked Resource approach enables Knowledge Creation, Combination and Analysis

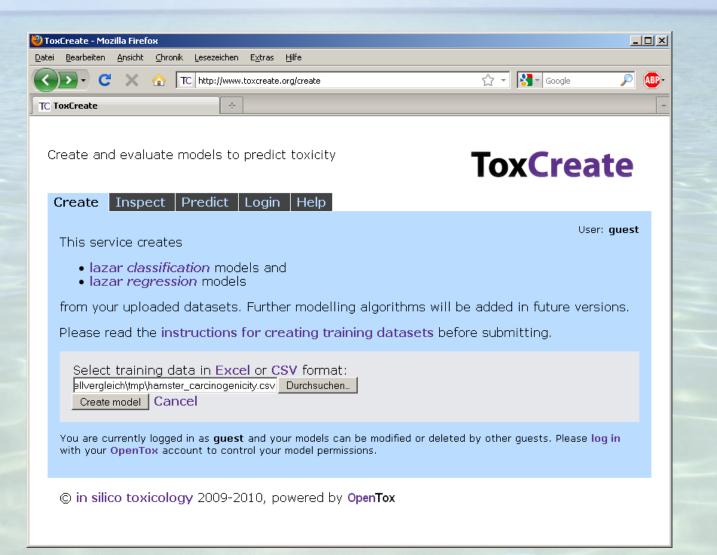
DBpedia = Linked Data approach applied to Wikipedia

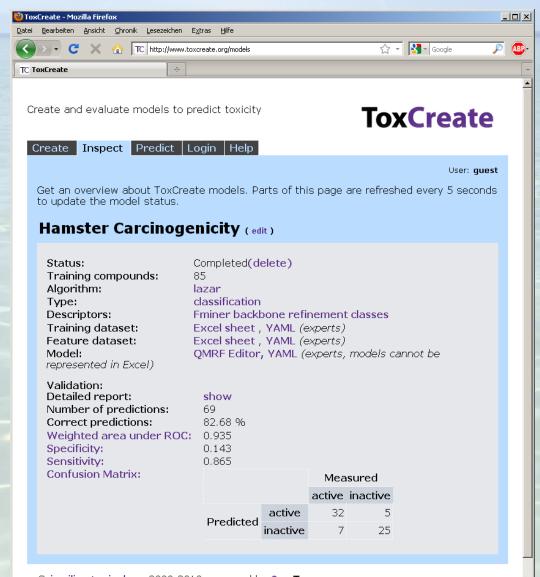
The OpenTox Framework (reported 2010)

Collaborative development of predictive toxicology applications Journal of Cheminformatics 2010, 2:7 doi:10.1186/1758-2946-2-7

Barry Hardy, Nicki Douglas, Christoph Helma, Micha Rautenberg, Nina Jeliazkova, Vedrin Jeliazkov, Ivelina Nikolova, Romualdo Benigni, OlgaTcheremenskaia, Stefan Kramer, Tobias Girschick, Fabian Buchwald, Joerg Wicker, Andreas Karwath, Martin Gutlein, Andreas Maunz, Haralambos Sarimveis, Georgia Melagraki, Antreas Afantitis, Pantelis Sopasakis, David Gallagher, Vladimir Poroikov, Dmitry Filimonov, Alexey Zakharov, Alexey Lagunin, Tatyana Gloriozova, Sergey Novikov, Natalia Skvortsova, Dmitry Druzhilovsky, Sunil Chawla, Indira Ghosh, Surajit Ray, Hitesh Patel and Sylvia Escher

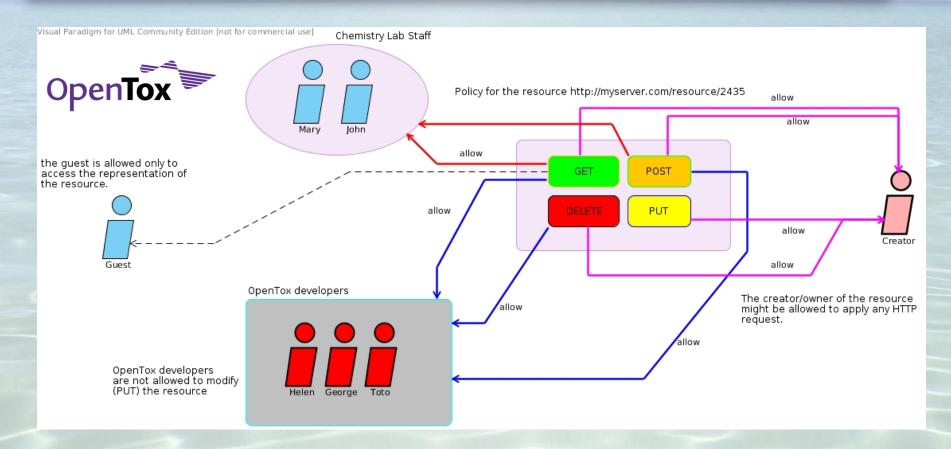
Open Access publication available at www.jcheminf.com/content/2/1/7


A Toxicology Ontology Roadmap


- See perspectives and roadmap published in A Toxicology Ontology Roadmap ALTEX 29(2), 129- 137 and Toxicology Ontology Perspectives 139 - 156 (2012)
- Available online in Open Access mode from <u>www.altex.ch</u>
- Barry Hardy (Douglas Connect and OpenTox), Gordana Apic
 (Cambridge Cell Networks), Philip Carthew (Unilever), Dominic Clark
 (EMBL-EBI), David Cook (AstraZeneca), Ian Dix (AstraZeneca &
 Pistoia Alliance), Sylvia Escher (Fraunhofer Institute for Toxicology &
 Experimental Medicine), Janna Hastings (EMBL-EBI), David J. Heard
 (Novartis), Nina Jeliazkova (Ideaconsult), Philip Judson (Lhasa Ltd.),
 Sherri Matis-Mitchell (AstraZeneca), Dragana Mitic (Cambridge Cell
 Networks), Glenn Myatt (Leadscope), Imran Shah (US EPA), Ola
 Spjuth (University of Uppsala), Olga Tcheremenskaia (Istituto
 Superiore di Sanità), Luca Toldo (Merck KGaA), David Watson (Lhasa
 Ltd.), Andrew White (Unilever), Chihae Yang (Altamira)

Based on Proceedings from the Toxicology Ontology Roadmap Workshop EMBL-EBI Industry Programme Workshop 16 -17th November 2010, Hinxton, UK

ToxCreate - (Q)SAR Model Building application

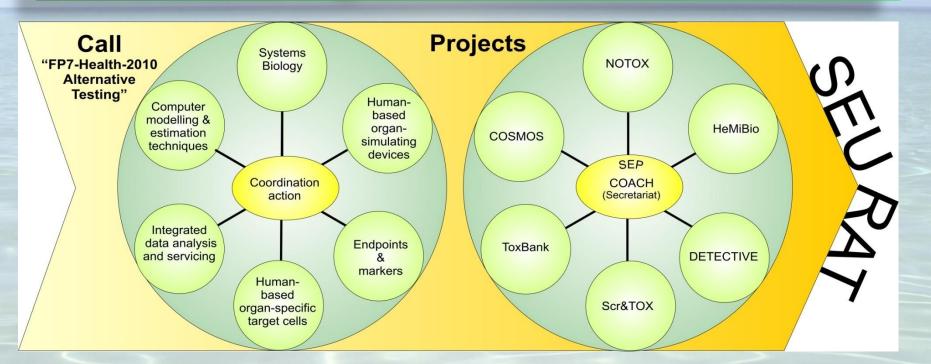

ToxCreate – (Q)SAR Model Results

© in silico toxicology 2009-2010, powered by OpenTox

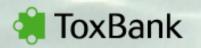
	OECD Principle	OpenTox addresses Validation Principles by
1	Defined Endpoint	providing a unified source of well defined and documented toxicity data with a common vocabulary
2	Unambiguous Algorithm	providing transparent access to well documented models and algorithms as well as to the source code
3	Defined Applicability Domain	integrating tools for the determination of applicability domains during the validation of prediction models
4	Goodness-of-fit, robustness and predictivity	providing scientifically sound validation routines for the determination of errors and confidences
5	Mechanistic interpretation (if possible)	integrating tools for the inference, correlation or prediction of toxicological mechanisms and the recording of opinions and analysis in reports

Integrating public and confidential data

Use Open Standards on Resources but with extensive Authorisation and Authentication facilities accompanied by confidential data policies. e.g. Validation against Confidential Data Case implemented by OpenTox Spring 2011


Bioclipse Visualisation Workbench - OpenTox

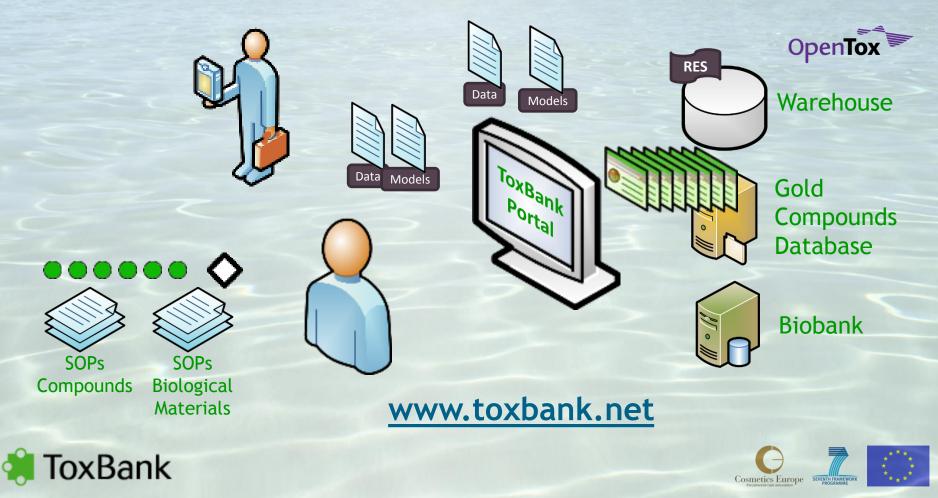
20Mols.s	df £3		🗖 🗖 🔛 Decision Sup	port X3	
	⇒ Bioclipse				
	File Edit Window Help				
ы					-
				000004 8-8-	🖬 🔁 Decision
		O 0037.cml O *UNNAMED			🗆 🖬 S 🖾 🎯 We
	⊟ 🕏 🏹	Changed	^		0 4 5
	Sample Data Test1	gen		Ames Structural Alerts [1 pos]	4 X 4
	TestBH1		0	 Epoxide 	🔺 🔽 🖺 Samples
	🕼 Virtual		\sim	Ames exact matches [no hits]	V 🖹 Amin
				Ames nearest neighbour [3 pos, 1 neg]	🔽 🗏 Epoxi
		~ `	X	26761-45-5 [tanimoto=0.82]	🔽 🗐 Ester
			$\gamma \gamma \gamma$	2461-18-9 [tanimoto=0.81]	🔽 🖩 t-Buty
			× *	2461-15-6 [tanimoto=0.73]	
				5926-90-9 [tanimoto=0.71]	
			~	A • OpenTox	
		100 M		Caco-2 Cell Permeability http://www.n	
		10kg			
		· · · · · · · · · · · · · · · · · · ·		🔺 💻 Lipinski Rule of Five	
				LipinskiFailures = 0.0	_
			~	A = MolecularWeight	3
		٩.	3	·	
		Properties		D 2D-Structure	
		Property	Value		
		General			
		Classification	POSITIVE		
		Matching atoms	22, 21, 23		
		Name	Epoxide		
Table Single	e	Test	Ames Structural Alerts		
aration	vith Ola Spj	iuth			


Bioclipse-OpenTox Integration – See Application example in Chapter in <u>Open Source Software in Life Science</u> <u>Research: Practical Solutions to Common Challenges in the Pharmaceutical Industry and Beyond</u>

(Woodhead Publishing Series in Biomedicine) edited by Lee Harland and Mark Forster (30 Oct 2012)

The Building Blocks of SEURAT-1

70 research groups from European Universities, Public Research Institutes and Companies (more than 30% SMEs)
 www.seurat-1.eu



This project is jointly funded by Cosmetics Europe and the EC. Any opinions expressed in this slide are those of the author. Cosmetics Europe is not liable for any use that may be made of the information contained therein.

Our Infrastructure Vision for ToxBank supporting all steps of Predictive Toxicology Research

Users access compounds, biological materials, data and models for experimental planning and integrated analysis of experimental results

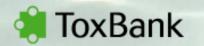
Working on Requirements & Systems Design

Organizing notes collected from interviews with SEURAT scientists

Hierarchically grouping the notes

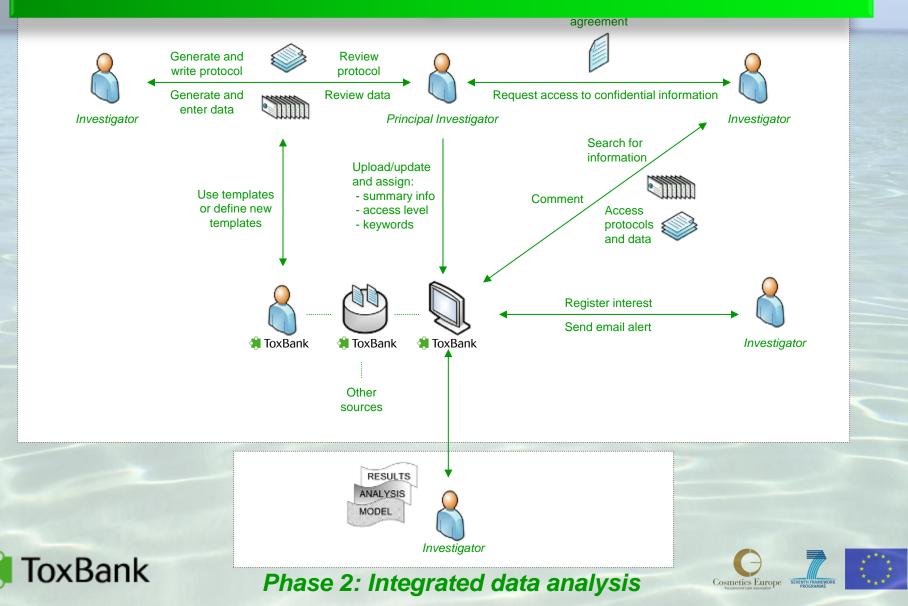
Generating design ideas

Storyboarding different user interfaces


Evaluating different

Reviewing use cases

ToxBank Wiki Development


🐐 ToxBank	Page Discussion Read Edit View history *						
TOXEGUIK	Main Page						
Main page Recent changes	ToxBank Wiki The following wiki pages provide information on compounds and biological materials developed as part of the SEURAT-1 🗗 cluster through the ToxBank project. The research leading to these results has						
Hepatotoxins	received funding from Cosmetics Europe and the European Community's Seventh Framework Programme & (FP7/2007-2013) under grant agreement n° [267042]. This wiki site reflects only the authors' views. The European Community and Cosmetics Europe are not liable for any use that may be made of the information contained herein.						
Cardiotoxins							
Renal Toxins	Gold compounds wiki pages [edit						
Special Substances	Information on this wiki is based on the research and compound selection tasks performed by the Gold Compound Working Group (GCWG) using a selection criteria outlined by members of the GCWG.						
Undifferentiated Stem Cells	 Further background information may be available from this working group or under review; selected reviewed materials are made available here. Hepatotoxic Compounds 						
Reagents (Growth Factors)	Cardiotoxic Compounds Selection Criteria						
<u>Reagents (Antibodies)</u>	Questions, inquiries, comments and feedback regarding the scientific content on these pages may be directed to the Gold Compound Working Group (GCWG) . The email will automatically be sent to all members on the GCWG group.						
 Reagents (Others) Suppliers (Cells) 	Assistance with wiki access or issues with the website in general may be directed to Micha Rautenberg 🗇 or David Bower 🗇 of the ToxBank project.						
ALSPAC	Biological materials wiki pages [edit						
Biopredic Cellartis	This wiki contains information on cells and reagents relevant to the SEURAT-1 cluster. The following document provides guidance for the banking and supply of human embryonic stem cells: Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. 						
Cellular Dynamics DSMZ	Questions, inquiries, comments and feedback regarding the scientific content on these pages may be directed to the Luam Kidane 🖄 at the UK Stem Cell Bank.						
HPACC ICLC	Recent News						
Lonza BioResearch Riken Bioresource	A report detailing the compound selection strategy was produced as a result of the numerous insightful meetings held at the Seurat-1 2 nd Annual Meeting @ and may be downloaded here.						

wiki.toxbank.net

Data Sharing Processes

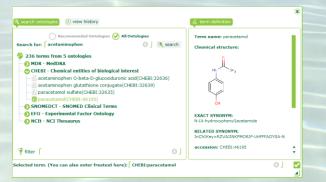
Unified data access

Investigation information SEURAT-1 information

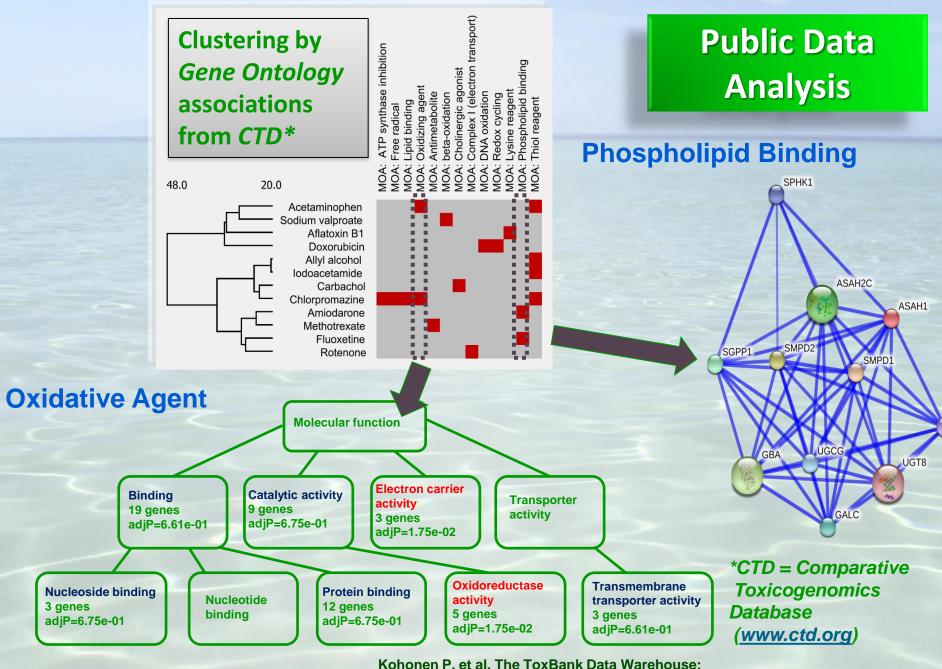
Publications

Templates for different assays

file study view stilles options help Isatab^{***} overview.


() information

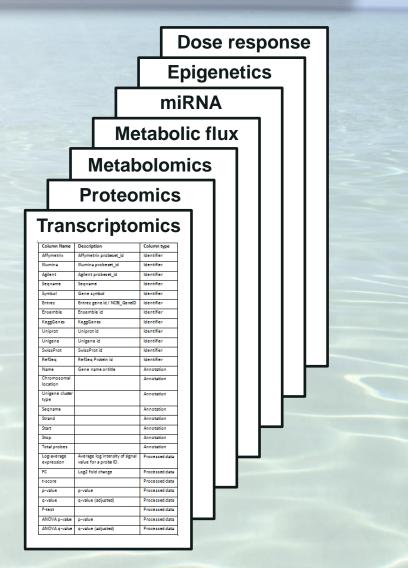
Specify experimental factors


Materials and results, with links to files containing the raw or processed data

Each step linked to a SEURAT-1 protocol

Terms mapped to ontologies

Supporting the Replacement of In Vivo Repeated Dose Systemic Toxicity Testing. Mol. Inf.17 JAN 2013.

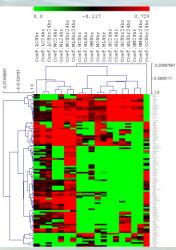

ToxBank Phase I – Unified data access

Edit View Favorites Tools Help			ular wooeling > wolecular information		
JOURNAL TOOLS Get New Content Alerts Get RSS feed Save to My Profile Get Sample Copy Recommend to Your Librarian JOURNAL MENU Journal Home FIND ISSUES Current Issue All Issues	, Kevin Cross ³ , Roland C. Grafstrom ¹ , Lyn Healy ⁴ , Christoph Helma ⁵ , Nina Jeliazkova ⁶ , Vedrin Jeliazkov ⁶ , Silvia Maggioni ² , Scott Miller ³ , Glenn Myatt ³ , Michael Rautenberg ⁵		Molecular Informatics Special Issue: Advances in Computational Toxicology Volume 32, Issue 1, pages 47 –63, January 2013		
FIND ARTICLES Early View Most Accessed Most Cited GET ACCESS	 , Glyn Stacey⁴, Egon Willighagen¹, Jeff Wiseman⁷, Barry Hardy^{8,*} Article first published online: 17 JAN 2013 DOI: 10.1002/minf.201200114 Copyright © 2013 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim 				
Subscribe / Renew FOR CONTRIBUTORS Author Guidelines OnlineOpen Submit an Article	Additional Information (Show All) How to Cite Author Information Publication History Funding Information				
ABOUT THIS JOURNAL					

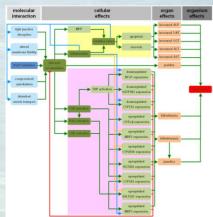
onlinelibrary.wiley.com/doi/10.1002/minf.201200114/full

Standardization of processed data

- To support ToxBank integrated data analysis objectives (precise searching, meta analysis, ...)
- The columns
 - (1) uniquely identify the *material* (e.g. the Affymetrix probeset_id),
 - (2) annotate the *material* (e.g. the name of the gene),
 - (3) describe the processed results (e.g. fold change comparing genes expressed in the treated sample to the control).



Analysis examples

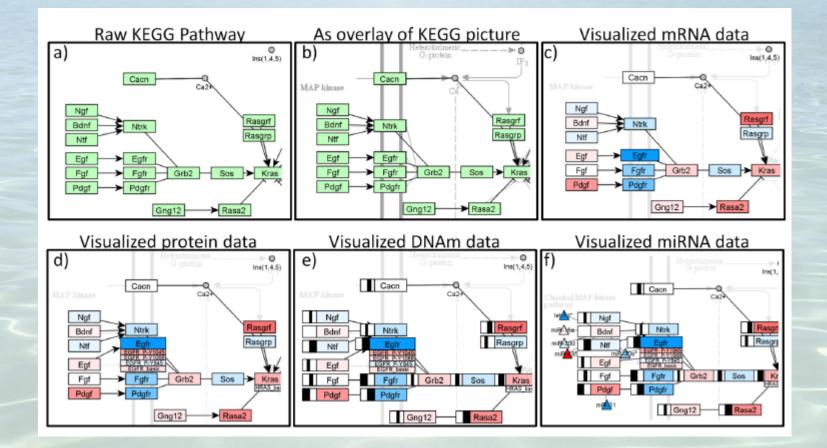

Multi-omics pathway enrichment

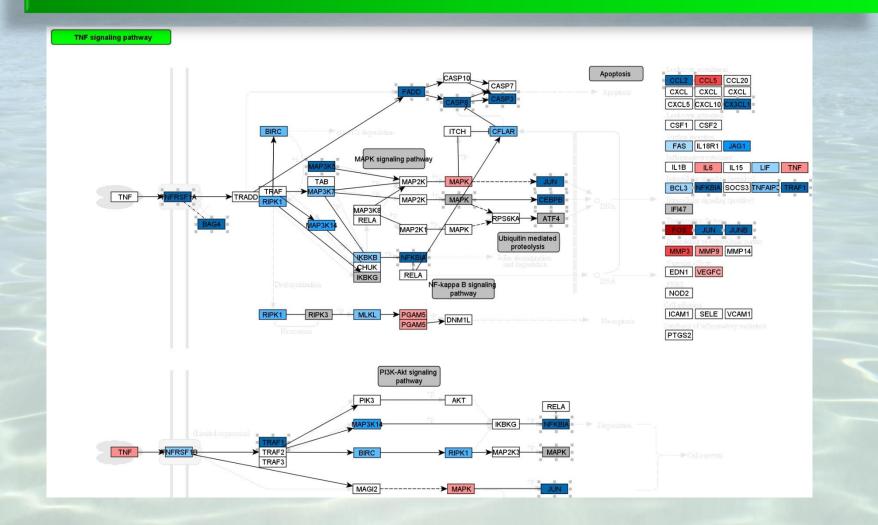
Analysis and visualization

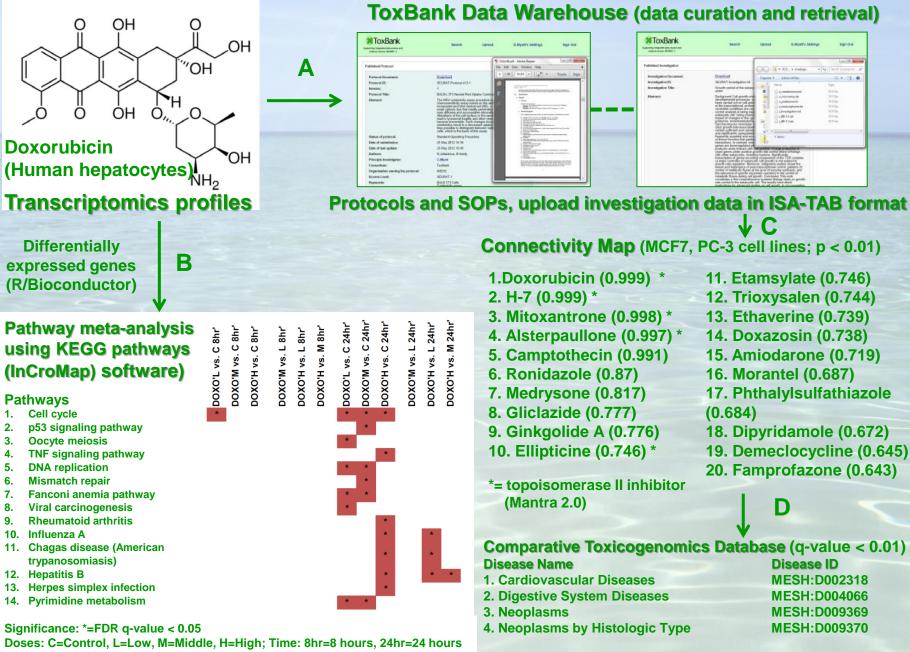
Development of AOPs

Search other investigations

Supporting integrated data access and analysis acress SEUBAT-1	Search	Upload	G.Myatt's Se	ttings	Sign Out
Gene:	E.g. 1421027 a at, Mef2c				
Protein:					
	E.g. K2C1_HUMAN, Keratin				
Metabolite:					
inclubolite.	E.g. 56-87-1, lycine				
miRNA:	E.g. aca-let-7a, Anolis carolinensi	a lat Ta stars land			
0.11.	c.g. aca-ret-7a, Anons carolinensi	silet-74 stem-loop			
Cells:					
	E.g. R-09-011, MAN-2				
Pathways:					
	E.g. p53 signaling			Cancel Se	arch
				Council (De	
Gold compounds and biom	aterials wiki Help	Contact	Terms and Cond	itions A	bout


Understanding experiments


Understanding kinetics


C-ADME ?	Compound Assessment			
Cparameters ?		monly used dose schedule when used as a single agent is 60 to 75 mg/m2 as a single jection administered at 21-day intervals.		
	Protein bindin	g 70%		
	Half life	55 hours		
	Vd	20-30 L/kg (700-100 L/m ²)		
	Cmax	3 uM for 30 mg/m ² intravenous bolus dose. Cellular levels are about 30–100-fold higher than that of the plasma.		
	Excretion	predominantly in bile, 40-50% in feces within 7 days (50% as unchanged drug).		
	Plasma clearance	324 to 809 mL/min/m ² , biphasic		
	Metabolism	~50% metabolized by the liver		
	References:			
	- http://www.drugbank.ca/drugs/D800997 @			
	- http://reference.medscape.com/drug/doxorubicin-342120 @			
	 -AK. Souid et al. "Immediate effects of anticancer drugs on mitochondrial oxygen consumption"; Biochemical Pharmacology 66 (2003) 977–987 			

Understanding multiple omics datasets

ToxBank – TG Gates integrated analysis example

(0.684)**18. Dipyridamole (0.672)** 19. Demeclocycline (0.645)

20. Famprofazone (0.643)

11. Etamsylate (0.746)

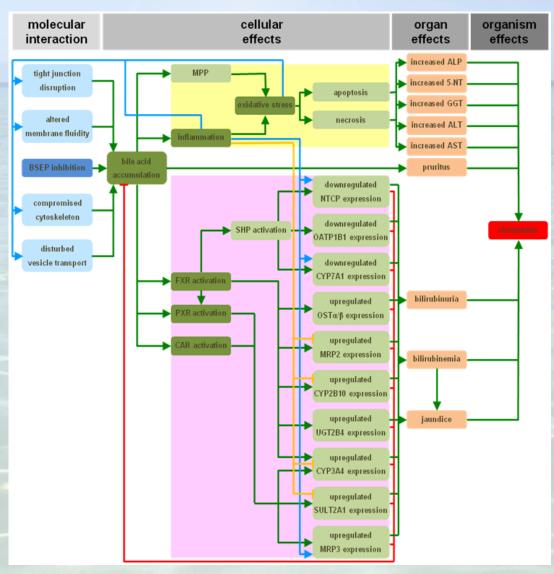
12. Trioxysalen (0.744)

13. Ethaverine (0.739)

14. Doxazosin (0.738)

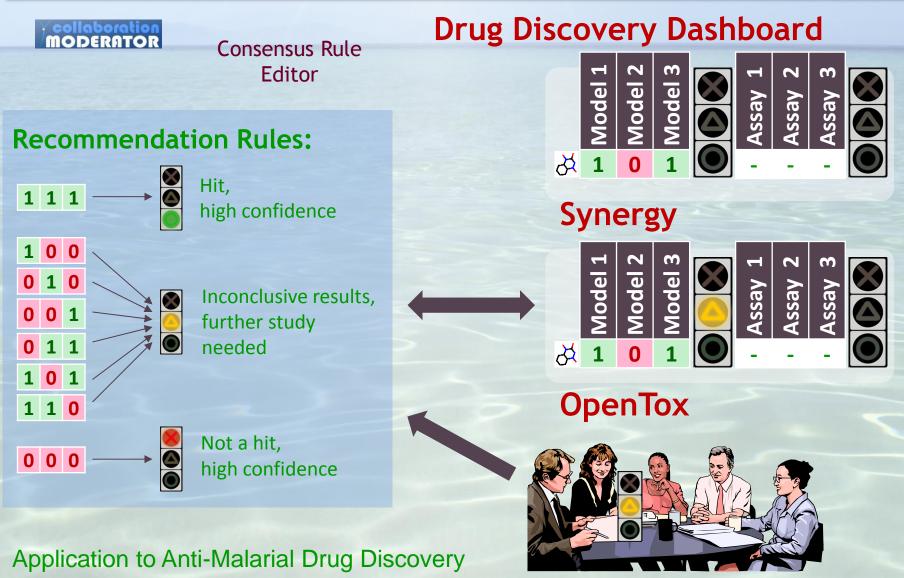
16. Morantel (0.687)

15. Amiodarone (0.719)

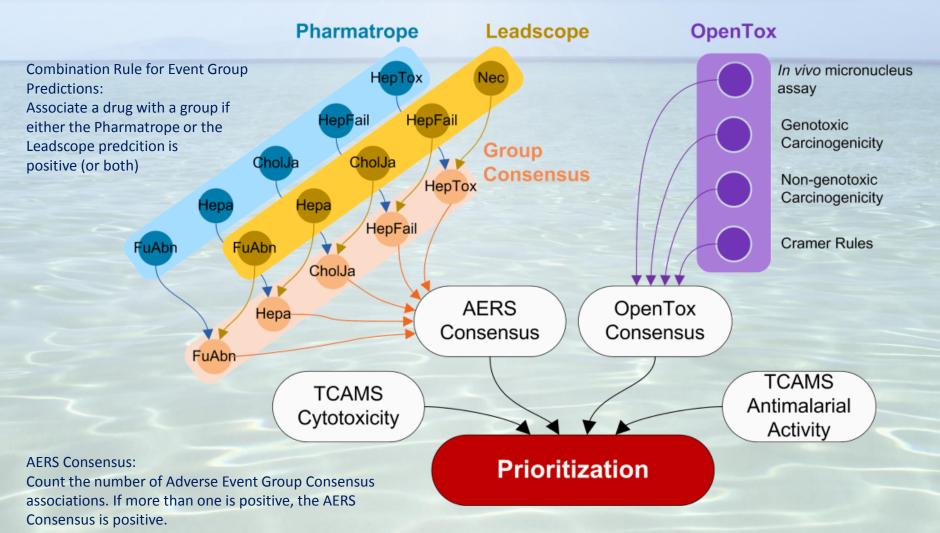

17. Phthalylsulfathiazole

D

Disease ID MESH:D002318 MESH:D004066 MESH:D009369 MESH:D009370


Kohonen P, Ceder R, Smit I, Hongisto V, Myatt G, Hardy B, Spjuth O, Grafström R. Basic Clin Pharmacol Toxicol. 2014 Jul;115(1):50-8.

Adverse outcome pathway (AOP) : drug-induced cholestasis


Vinken M., Landesmann B., Goumenou M., Vinken S., Shah I., Jaeschke H., Willett C., Whelan M., Rogiers V. (2013) Development of an adverse outcome pathway from drug-mediated bile salt export pump inhibition to cholestatic liver injury. *Archives of Toxicology*: submitted .

Event Driven Weight of Evidence

- www.scientistsagainstmalaria.net

Combining Predictions and Experimental Data

OpenTox Consensus:

Negative if both carcinogenicity and the micronucleus assay predictions are negative, OR if the Cramer Rule classification is Class I. Positive otherwise. TCAMS Cytotoxicity: Positive if > 30% growth inhibition at 10 μ M.

TCAMS Antimalarial Activity: Positive if > 80% growth inhibition of P. Falciparum DD2 at 2 μ M.

Main objectives of eNanoMapper

- Modular infrastructure for data storage, sharing and searching, based on open standards and semantic web technologies, minimum information standards and established security solutions;
- Development of ontologies for the categorisation and characterisation of eNMs in collaboration with other projects
- Creation of new computational models in nanomaterials safety through the implementation of interfaces for toxicity modelling and prediction algorithms which may process all data made available through eNanoMapper (e.g. using algorithms available from the OpenTox FP7 project or statistical/data mining software)
- Meta analysis of nano-bio interactions supporting "safe-by-design" ENMs development by pursuing a Linked Data approach which integrates data and metadata originating from diverse sources within nanoscience, chemistry, biology and toxicology
- Creation of tools for the exchange, quality assurance and reporting of research protocols and data for regulatory purposes
- Creation of a community framework for interdisciplinary collaboration

www.enanomapper.net

NanoEHS Data & Modeling & EU-US Cooperation – Themes of our Discussion (Venice, March 2015)

Reference Information

More Open Data

Interoperability

Ontology

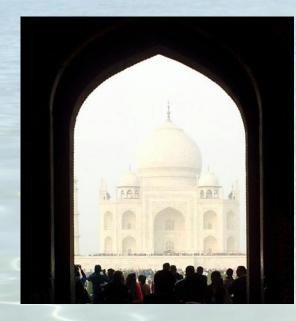
Integrated

Transparency

Sustainability

Use cases

Reuse


Open Source

Knowledge

Systems Design

Create Solutions

Taj Mahal Project Action Plan – Supporting EU-US Community of Research InterAction

- 1. Define Use Cases (with all CoRS)
- 2. Create Systems Design
- 3. Evaluate Existing Resources
- 4. Develop Sustainability Plan
- Create Application based on Open data, software, protocols, and ontology (Agile Development)
- 6. Support collaborative work of all CoRs with using the Application

OpenTox Association

1) International Non-profit Association founded 27 March 2015 2) Individual Memberships 3) Working Groups – prioritised activities and goals 4) Meetings a. 30 Sept – 2 Oct, Dublin, Ireland b. 13 – 15 Oct, Philadelphia, USA c. 7 – 9 Dec, Seoul, South Korea

OpenTox Working Groups

Working Groups

- a. Application Programming Interfaces (APIs), Christoph Helma (in silico toxicology)
- b. Data, Metadata and Ontology Standards, Thomas Exner (Douglas Connect GmbH)
- c. Adverse Outcome Pathway (AOP) development, *Stephen Edwards (US EPA)*d. Deployment, *Tim Dudgeon (Informatics*)

Matters)

Further information under <u>www.opentox.net</u> and <u>www.opentox.org</u> (content currently being reviewed, updated and merged)

Collaborating Partners on eNanoMapper

Douglas Connect, Switzerland (Coordinator) Maastricht University, Netherlands

In Silico Toxicology, Switzerland

Ideaconsult, Bulgaria

National Technical University of Athens, Greece

EMBL-EBI, UK

Karolinska Instituet, Sweden

Associate Partners

VTT, Finland

Collaborating Partners on OpenTox

In Silico Toxicology, Switzerland

Ideaconsult,

Bulgaria

Douglas Connect, Switzerland (Coordinator)

Albert Ludwigs University Freiburg, Germany

> National Technical University of Athens, Greece

Fraunhofer Institute for Toxicology & Experimental Medicine, Germany

David Gallagher, UK Instit

Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, Russia Seascape Learning & JNU, India

Istituto Superiore di Sanità, Italy

Technical University of Munich, Germany

ToxBank Acknowledgements

DouglasConnect

in silico toxicology

UK Stem Cell Bank, NIBSC-HPA

Ideaconsult Ltd