
GETTING CANDLE RUNNING ON BIOWULF
 

Getting CANDLE running on Biowulf

 Whenever Singularity is used (as it is here), bind pertinent directories 

export SINGULARITY_BINDPATH="/gs3,/gs4,/gs5,/gs6,/gs7,/gs8,/gs9,/gs10/
,/gs11,/gpfs,/spin1,/data,/scratch,/fdb,/lscratch"

This is something you might want to put in your ~/.bashrc or ~/.bash_profile so it’s
automatically loaded upon login. 

 Run a CANDLE benchmark 

This is the most straightforward way to make sure everything is working; you don’t have to run
it to completion. 

 (1) Set variables 

working_dir=<WORKING-DIRECTORY; e.g., ~/test>
gpu_type=<GPU-TYPE-ON-BIOWULF; e.g., k80>

 (2) Clone CANDLE benchmarks from Github 

mkdir ~/candle
cd ~/candle
git clone https://github.com/ECP-CANDLE/Benchmarks.git

 (3) Run benchmark 

cd $working_dir
echo '#!/bin/bash' > ./jobrequest.sh
echo "module load singularity" >> ./jobrequest.sh
echo "singularity exec --nv /data/classes/candle/candle-gpu.img python
 /data/`whoami`/candle/Benchmarks/Pilot1/P1B1/p1b1_baseline_keras2.py"
 >> ./jobrequest.sh
sbatch --partition=gpu --mem=50G --gres=gpu:$gpu_type:1 ./jobrequest.s
h

                               1 / 4



GETTING CANDLE RUNNING ON BIOWULF
 

You should see your job queued or running in SLURM (e.g., squeue -u $(whoami)) and output
being produced in $working_dir. 

You can also SSH into the node on which the job is running (which is listed under “NODELIST
(REASON)” of the squeue command) and even make sure the node’s GPU is being used by
running the nvidia-smi command. 

Now that you know everything is working you can kill the job using scancel <JOB-ID>, where
<JOB-ID> is listed under JOBID of the squeue command. Or if you’re interested, you can let
the job run; it should take about 30 min. 

 Run a grid search (a type of hyperparameter optimization) using output
from a test model 

In our case the test model just returns random numbers, but this allows you to test the complete
workflow you’ll ultimately need for running your own model. 

 (1) Set variables 

working_dir=<WORKING-DIRECTORY; e.g., ~/grid_search>
expt_name=<EXPERIMENT-NAME; e.g., random_loss_func>
ntasks=<NTASKS; e.g., 3> # should be greater than 2
job_time=<MAXIMUM-RUNTIME; e.g., 60>
memory=<MAXIMUM-MEMORY-NEEDED; e.g., 10G>
gpu_type=<GPU-TYPE; e.g., k80>

 (2) Copy grid search template to working directory 

cp -rp /data/classes/candle/grid-search-template/* $working_dir

 (3) Edit one file 

In $working_dir/swift/swift-job.sh change ./turbine-workflow.sh to swift/turbine-workflow.sh. 

 (4) “Compile” and run the grid search 

cd $working_dir
echo '#!/bin/bash' > ./compile_job.sh

                               2 / 4



GETTING CANDLE RUNNING ON BIOWULF
 

echo "module load singularity" >> ./compile_job.sh
echo "singularity exec /data/classes/candle/candle-gpu.img swift/stc-
workflow.sh $expt_name" >> ./compile_job.sh
sbatch -W --time=1 ./compile_job.sh
experiment_id=${expt_name:-experiment}                                
                                                                      
                                                                      
                                                                      
         
sbatch --output=experiments/$experiment_id/output.txt --error=experime
nts/$experiment_id/error.txt --partition=gpu --gres=gpu:$gpu_type:1 --
cpus-per-task=2 --ntasks=$ntasks --mem=$memory --job-name=$experiment_
id --time=$job_time --ntasks-per-node=1 swift/swift-
job.sh $experiment_id

 Run a grid search using your own model 

We already transferred the CANDLE scripts to a local directory (in the above example, to
working_dir=~/grid_search). With this directory structure in place, we will now adapt some of
these scripts to your own data and model. 

 (1) Set variables 

expt_name=<EXPERIMENT-NAME; e.g., my_model>
ntasks=<NTASKS; e.g., 3> # should be greater than 2
job_time=<MAXIMUM-RUNTIME; e.g., 60>
memory=<MAXIMUM-MEMORY-NEEDED; e.g., 10G>
gpu_type=<GPU-TYPE; e.g., k80>

 (2) Copy over new grid search template scripts 

Warning: This will overwrite the two scripts in $working_dir/scripts. 

cp -f /data/BIDS-
HPC/public/grid_search_template/* $working_dir/scripts

 (3) Edit files 

                               3 / 4



GETTING CANDLE RUNNING ON BIOWULF
 

 $working_dir/scripts/run_model.sh: this is a helper shell script that accepts the
hyperparameters as command line arguments and calls the model via a Python script,
train_model.py, below. Typically you only need to edit the setting of $ml_model_path.
 $working_dir/scripts/train_model.py: this is the main, customizable Python script that
calls the machine learning model with a particular set of hyperparameters. Its inputs
should be a string defining a dictionary of hyperparameters (which is automatically
generated in run_model.sh) and the text file containing the result of the model on the
data with the current set of hyperparameters.
 $working_dir/data/dice-params.txt: text file containing a hyperparameter combination
on every line. Can be generated with a script e.g. $working_dir/data/data-generator.py.

 (4) “Compile” and run the grid search 

These are the same steps as for the test model. 

cd $working_dir
echo '#!/bin/bash' > ./compile_job.sh
echo "module load singularity" >> ./compile_job.sh
echo "singularity exec /data/classes/candle/candle-gpu.img swift/stc-
workflow.sh $expt_name" >> ./compile_job.sh
sbatch -W --time=1 ./compile_job.sh
experiment_id=${expt_name:-experiment}                                
                                                                      
                                                                      
                                                                      
         
sbatch --output=experiments/$experiment_id/output.txt --error=experime
nts/$experiment_id/error.txt --partition=gpu --gres=gpu:$gpu_type:1 --
cpus-per-task=2 --ntasks=$ntasks --mem=$memory --job-name=$experiment_
id --time=$job_time --ntasks-per-node=1 swift/swift-
job.sh $experiment_id

Powered by TCPDF (www.tcpdf.org)

                               4 / 4

http://www.tcpdf.org

