What does AI see? Deep Segmentation Networks discover biomarkers for lung cancer survival

Stephen Baek1,2,3, Yusen He1, Bryan Allen2, John Buatti2, Brian Smith4, Kristin Plichta2, Steven Seyedin2, Maggie Gannon2, Katherine Cabel2, Yusung Kim2, Xiaodong Wu2,3

1 Department of Industrial and System Engineering, 2 Department of Radiation Oncology
3 Department of Electrical and Computer Engineering, 4 Department of Biostatistics

University of Iowa
IOWA, USA
3D Co-Segmentation UNet

- PET-CT Co-Segmentation UNet (Zhong et al., 2018)
Can deep segmentation network encode features for survival prediction?
Outcome Prediction Framework
96 NSCLC patients with pairs of PET-CT image

In total of 55,296 features were obtained from each of the pre-trained 3D deep segmentation UNet

We discovered approximately 20 features that are highly correlated with cancer survival

Via bootstrapping, the deep-learned features totally outperforms the conventional radiomic approaches
Network Visualization

- Visualizing Latent Neurons

Optimization Problem: \(X^* = \arg \max_x q_i(X|W, b) \)

Gradient Ascent: \(X^{k+1} = X^k + \gamma^k \nabla q_i(X^k|W, b) \)

- \(X^k \): Current solution at \(k \)-th iteration
- \(\gamma^k \): step length
- \(\nabla q_i \): gradients computed using backpropagation

Activation value: \(q_i(X|W, b) \)
Network Visualization

- Visualizing CT UNet Survival-related Neurons

CT

PET
Risk Map

Input: \mathbf{X}

Pre-trained segmentation encoder

Feature activation maps

Logistic regression layer

Survival outcome

Death

Survival

$\omega_k = \max \left(\frac{\partial (1 - S(X))}{\partial A_{i,j}^k}, 0 \right)$

Weights: ω_i
Normalization factor: Z
Neuron ID: i, j
Activation Map ID: A^k
Survival probability: $S(X)$

$R(X) = \sum_{m} \omega_k A^k(X)$
Risk Map

- Risk Map Visualization

Patient IA002100
(Survival: 1.13 years)
Possible Correlation with Cancer Progression

a. Axial slice from a primary (pre-therapeutic) CT image

b. Risk map of the CT image

c. Post-therapeutic CT image of the same patient.
Thank You!

Questions?

Acknowledgments: This research is under support in part by NCI R21CA209874.