Opening apps and notebooks for cloud-scale cancer genomics

with Bioconductor

ITCR May 2019

Vince Carey (HMS), presenting results of efforts with Sean Davis of NCI CCR, John Readey (HDF Group), Herve Pages (FHCRC), BJ Stubbs, Shweta Gopaulakrishnan (HMS), Lori Shepherd (RPCI), Nathalie Pochet, Mohsen Nabian, Celine Everaert (Broad/HMS), Olivier Gevaert (Stanford), Marcel Ramos (CUNY), Nitesh Turaga, Martin Morgan (RPCI), Levi Waldron (CUNY)
A tension for cloud-scale genomic computing strategy

Integrated, mutually interdependent infrastructure (pre-cloud "ecosystem")

Isolated, high-speed, focused microservice, suited to cloud deployment (swagger, "serverless", ...)

Another tension

- Separation of concerns vs. silo-smashing
 - example from E. Mardis: seven fusion detectors employed -- separation of concerns manifested in multiple independent methods for a similar goal
 - Ravi Madduri -- variant calling APIs may change -- headache!
- Benefits of siloing
 - diversity of approaches to attacking very hard problems
 - evidential value of consensus
- Reduction of costs of siloing requires coordination/governance, test framework
Two concepts of governance for software ecosystems

- **Active**: users/developers get a seat on the board managing system components and vote on whether or not a pull request for an API change is merged
- **Passive**: tool developers commit in advance to grace periods during which
 - deprecated elements of APIs are noted as such
 - downstream tools have time to adapt
- In Bioconductor, this passive approach leads to "release" and "devel" branches -- costly to maintain, possibly confusing as we co-evolve with R, but likely **central to project durability and growth**
- Active and passive approaches are not mutually exclusive
Road map

- Example of an "app" that uses key cloud computing concepts implicitly: ivyGlimpse
- A project that is inevitably cloud-dependent: Sean Davis' BigRNA and OmicIDX systems, and the resulting ca43k app built from Bioconductor components
- Principles, tensions, and more examples
Part 1: IvyGAP resources: ISH

Data Overview

The Ivy Glioblastoma Atlas Project includes the following data sets

ISH: Image data at cellular resolution of *in situ* hybridization (ISH) tissue sections and adjacent hematoxylin and eosin (H&E)-stained sections annotated for anatomic structures

- **Anatomic Structures ISH Survey:** Primary screen of 8 tumors with probes for 343 genes enriched in glioblastoma.
- **Anatomic Structures ISH for Enriched Genes:** Subsequent screen of 29 tumors with probes for 37 genes enriched in glioblastoma structures identified in Anatomic Structures RNA-Seq Study (see below).
- **Cancer Stem Cells ISH Survey:** Primary screen of 16 tumors with probes for 55 genes enriched in putative cancer stem cells, resulting in a 20 probe reference set, which was then used in an extensive screen of 42 tumors.
- **Cancer Stem Cells ISH for Enriched Genes:** Subsequent screen of 37 tumors with probes for 76 genes enriched in clusters of putative cancer stem cells identified in the Cancer Stem Cells RNA-Seq Study (see below).
IvyGAP resources: RNA-seq -- complex design

RNA-Seq: RNA sequencing data for anatomic structures identified in the Anatomic Structures ISH Survey and putative cancer stem cell clusters isolated by laser microdissection

- **Anatomic Structures RNA-Seq**: Screen of 5 structures (Leading Edge, Infiltrating Tumor, Cellular Tumor, Microvascular Proliferation, and Pseudopalisading Cells Around Necrosis) identified by H&E staining. A total of 122 RNA samples were generated from 10 tumors.

- **Cancer Stem Cells RNA-Seq**: Screen of 35 clusters of putative cancer stem cells identified by ISH with a 17 reference probe subset (validated in the Cancer Stem Cells ISH Survey). A total of 148 RNA samples were generated from 34 tumors.

Specimen Metadata: De-identified clinical data for each patient and tumor.
App #1: Accessing annotation of an IvyGAP tumor tissue block: CThbv (hyperplastic blood vessels in cellular tumor) is unusually prevalent
IvyGAP explorer: expression, clinical, and image-based data for glioblastoma patients; see background panel for more details.

subBlockDetail features for selectables
scatterplot

Hover over for tumor donor ID; partition data by dragging over points to select; click on a specific point to visit IvyGAP clinical specimen page for that sample.

Kaplan-Meier, grp=1 for selected donors

Supported by NCI ITCR U01 CA214846 and U24 CA180996
Bioconductor/cloud in ivyGlimpse app

- Underlying Bioconductor package: ivygapSE
 (SummarizedExperiment unites sample-level and assay data)
- Expression data (not shown here) organized by cBioPortal pathway
- Rstudio shiny (and plotly) code in the package defines the app
- Rstudio shinyapps.io serves the app publicly ($39/month billed to the publishing author, various machine configurations available, performance diagnostics and usage logs)
- Developers and users take advantage of containerization and elasticity managed by Rstudio
Part 2: Data/metadata synthesis over NCBI SRA and other institutional archives: Sean Davis, NCI

What is this?
This is the OmicIDX API for accessing and analyzing omics metadata.

Background
The practice of Data Science often starts with finding, extracting, and organizing the data into systems that are fit for purpose. With the growth of genomics data resources, there are opportunities for large scale data reuse. Furthermore, the corpus of so-called "metadata" that detail the biological materials, experimental variables, and protocols and methods is now a large and rich dataset itself.

OmicIDX
The OmicIDX project collects disparate metadata from public genomics data repositories and transforms it into several forms that render it fit-for-purpose for large-scale and granular processing. Tasks such as indexing and searching, metadata enrichment with ontologies, and natural language processing all benefit from data resources that are available in bulk and computable formats.

What is an API
A web-based Application Programming Interface (API) uses the same technology as your browser. However, rather than you directing your browser to access information, an API is typically accessed by another piece of software. This software sends a request to the API (just a webserver running somewhere) in a format that the server will understand. The server then processes the request and returns a result, typically not in the form that is meant to be viewed on the screen but instead in a format that computers (and often humans) can read.
BigRNA Pipeline

Per-sample pipelines on NIH HPC resources

- dbGaP
- GDC
- Human
 - Mouse
 - Others

Generate FASTQ

Salmon Quantification

Build Salmon index

Other organism-specific transcript references

Mouse Gencode v19 transcript reference

Human Gencode v29 transcript reference
App #2: ca43k -- 43000 cancer transcriptomes not in TCGA

Objectives

● Unified representation of uniformly preprocessed RNA-seq from SRA -- Sean Davis' BigRNA project (now up to 700,000 transcriptomes quantified using salmon)
● Unified multiplexed access to quantifications via HDF Scalable Data Service (thanks to John Readey of HDF Group)
● Searchable comprehensive sample-level metadata
● Familiar programming patterns to filter and analyze
● "Fill your cart" with the transcriptomes you want
Bioconductor: Cancer43K

Full text search over genomic metadata on 43,000 cancer transcriptomes exclusive of TCGA, retrieved from NCBI SRA.

Explanatory video
File an issue

Search studies for

- **squamous cell carcinoma**

Click on rows of 'titles' table to add studies to cart.

- SRP002326
- SRP006575

A *restfulSE* is returned; RNA-seq quantifications by *salmon*.

<table>
<thead>
<tr>
<th>pmid</th>
<th>hits</th>
<th>study</th>
<th>title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>squamous cell carcinoma</td>
<td>RNAseq experiment of non-exposed skin, Actinic Keratosis, Intraepidermal Carcinoma and Squamous Cell Carcinoma</td>
</tr>
<tr>
<td>2</td>
<td>20174472</td>
<td>oral squamous cell carcinoma</td>
<td>RNA-Seq of oral squamous cell carcinomas and matched normal tissues</td>
</tr>
<tr>
<td>3</td>
<td>20459774</td>
<td>adenosquamous cell carcinoma</td>
<td>Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumors and matched controls</td>
</tr>
<tr>
<td>4</td>
<td>22929540</td>
<td>head and neck squamous cell carcinoma</td>
<td>Transcriptional profiling of IncRNAs and novel transcribed regions across a diverse panel of archived human cancers</td>
</tr>
</tbody>
</table>
Autocompleting search widget

- selectize.js very performant over vectors of options
- What should the options be?
- Tokenize study title, [abstract], and all field names and field values
- Lots of tokens, a 'facilitated' lexicographic search
What comes back for a Bioconductor user

Cart checked out with two studies selected

Transcriptional profiling of lncRNAs and novel transcribed regions across a diverse panel of archived human cancers

Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumors and matched controls
salmon quantifications are in the cloud, ready

```r
> assay(x)
<58288 x 133> DelayedMatrix object of type "double":

<table>
<thead>
<tr>
<th></th>
<th>SRX019280</th>
<th>SRX019281</th>
<th>SRX019282</th>
<th>...</th>
<th>SRX176119</th>
<th>SRX176120</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENSG00000000003.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>109.64368</td>
<td>242.28540</td>
</tr>
<tr>
<td>ENSG000000000005.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>ENSG000000000419.12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>1168.00027</td>
<td>257.99989</td>
</tr>
<tr>
<td>ENSG000000000457.13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>218.83636</td>
<td>572.78447</td>
</tr>
<tr>
<td>ENSG000000000460.16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>85.75431</td>
<td>244.28797</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>ENSG0000000284744.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>2.703193</td>
<td>0.000000</td>
</tr>
<tr>
<td>ENSG0000000284745.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>ENSG0000000284746.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>ENSG0000000284747.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>30.687233</td>
<td>21.091629</td>
</tr>
<tr>
<td>ENSG0000000284748.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>2.036036</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
```
The authors of SRP006575 identify a lincRNA on chr10 that seemed specific -- a breast cancer biomarker? We can swiftly confirm
Components employed in the evolution of OmicIDX/BigRNA
+ (current) - (not in use at present)
- Apache Spark (google and AWS)
+ Apache Beam - Implement batch and streaming data processing jobs that run on any execution engine/
+ GCP Cloud Dataflow - Simplified stream and batch data processing, with equal reliability and expressiveness
- AWS Lambda functions
- AWS DynamoDB - key-value and document database that delivers single-digit millisecond performance at any scale
+ AWS RDS - relational database service
+ Google BigQuery
+ Kubernetes
+ Docker
- Github actions - "automate your workflow from idea to production."
+ Github
+ AWS container registry
- Google container registry
- AWS Athena - serverless interactive query service
+ AWS S3
+ Google Cloud Storage
+ Elasticsearch (hosted service)
- Google Genomics Pipeline API
Concluding comments (1)

- Tension: integrated software ecosystem vs. distributed independent microservices glued together
 - Bioconductor gains a lot of momentum and reliability by using a uniform packaging protocol and comprehensive continuous integration for analytic software, genome annotation, and exemplary experiments
 - DelayedArray protocol provides one approach to working with microservice-based utilities without abandoning familiar programming patterns
 - Reliability assurance for distributed resource coordination is complicated and significant attention to fault-tolerance cannot be avoided
 - Exception handling cannot be an afterthought
Concluding comments (2)

- Hypothesis: We can get **elasticity** of task-focused environments and **scalability** of tools using Bioconductor's methods
 - Martin Morgan: BiocParallel over Kubernetes clusters -- developers use familiar code patterns but back end is determined at run time
 - Levi Waldron: bioconductor_devel github repository addresses endowment of docker containers, and use of singularity
 - dockstore.org: Bind workflow programs (CWL, WDL, …) to docker containers -- launch in hosted environments with a button
Parting shots -- silos I'd like to smash. 1) Statistical semantics of genomic metadata archives

Processing 988 cancer-related abstracts for latent semantic indexing and similarity query resolution

Composed by VJ Carey with support from NCI U01 CA214846

Code here is derived primarily from gensim tutorials. Our short-term objective is to exercise readily available textual modeling software to improve discoverability of genomic experiments. Our long-term objective is to establish an evaluation of procedures for semantic indexing and interrogation of very large compendia of genomic experiments and associated annotation and publications.

The main practical example is below where three phrases are used as search queries. More work is needed to connect the results of document association measures back to the documents and the associated experiments.

We will work with a text file called canabtsu.cor, that has 988 lines, each consisting of the 'study.abstract' text provided in SRA metadata as harvested using Sean Davis’ Omicidx metadata API.

Import textual data

```python
[ ] import gensim
import os
import collections
import smart_open
import random
```
2) Integrative proteogenomics -- many potential points of contact between CPTAC and Bioconductor