CFDose: personalized dosimetry for liver radioembolization

Emilie Roncali1,2, Amirtah\textasciitilde{} Taebi1, Ben Spencer1, Gustavo Costa1, Michael Rusnak2, Ben Spencer1, Denise Caudle2, Cameron Foster2, Catherine T. Vu2

1 Department of Biomedical Engineering, 2 Department of Radiology, University of California Davis
Transarterial radioembolization (TARE) with yttrium 90

First Y-90 PET/CT UCD 2017
Normal tissue activity → extratumoral microsphere deposition
Transarterial radioembolization (TARE) with yttrium 90

dose prediction: where to inject? how much?

First Y-90 PET/CT UCD 2017
Normal tissue activity → extra tumoral microsphere deposition

dose verification: how did we do? how much dose?
CFDose for Personalized 3D dosimetry with CFD

Planning CBCT

Meshing
Blood fluid properties
Boundary conditions
Flow Simulation: Multiscale Modeling

- Segmented branches > terminal arterioles

→ Segmented arterial tree combined with RCR Windkessel model for arterioles

- RCR circuit tuned using whole-body 0D model
Flow Simulation: Multiscale Modeling

- Segmented branches > terminal arterioles

→ Segmented arterial tree combined with RCR Windkessel model for arterioles

- RCR circuit tuned using whole-body 0D model
Blood Flow and Microsphere Distribution

- Lobar injection: segments received 5%-40%
- Selective injection: tumor received 82%

→ Tumor received 49% of microspheres after both injections

Taebi, Vu, Roncali. J. Biomech. (submitted)
Dose Kernel Calculation

\[
\text{Cumulative activity} \quad (\text{MBq.s})
\]

\[
\text{Gy / MBq.s}
\]

\[
= \quad \text{Gy}
\]

- Highly heterogenous dose distribution between segments
- Predicted total dose 125 Gy, consistent with physician reported dose with MIRD 137 Gy
Y-90 PET/CT post treatment

Absorbed dose

Clinical Y-90 PET/CT

Qualitative agreement between predicted dose and Y-90 PET measured activity

- 6 patients scanned at UC Davis since September 2017 through NCI CCSG
- Quantitative comparison of dose distribution in progress

Gustavo Costa, ITCR Poster
Conclusions

- Developed proof of concept dosimetry tool for personalized treatment planning

- Promising results, next step is validation then integration of computational tools

- Ultimate goal is a flexible tool for Interventional Radiologists to determine best injection site and activity pre-treatment based on dosimetry
Acknowledgments

Biomedical Engineering
Amirtaha Taebi, Ph.D.
Gustavo Costa, Ph.D.
Simon Cherry, Ph.D.
MIPET group

Radiation Oncology
Stanley Benedict, Ph.D.

Radiology
Catherine Vu, M.D.
Bahman Roudsari, MD, Ph.D.
Ramsey Badawi, Ph.D.
Denise Caudle, CNMT
Michael Rusnak, CNMT
Benjamin Spencer, Ph.D.

Virtual group meeting, 4-22-20