Deep Learning based microscopy image analysis pipelines

Conor L. Evans
Wellman Center for Photomedicine
Massachusetts General Hospital
Harvard Medical School
Team Central Mission

We are focused on problem-driven research developing optics, photonics, and computational based-solutions to understand and treat human disease
Acknowledgments

Alice Chao
James Chen
Avery Goss
Dan Greenfield
Helen Kashishian
Alex Ho
Xiaolei Li

Dr. Juan Cascales
Dr. Sinyoung Jeong
Dr. Ben Kuzma
Dr. Haley Marks
Dr. Matthias Muller
Dr. John Nguyen
Dr. Isaac Pence
Dr. Fei Peng
Dr. Manolis Rousakis
Dr. Lillian Witthauer

Dr. German Gonazles
Dr. Amin Feizpour
Acknowledgments
Problem: Data \neq Information

- Biomedical imaging experiments can generate huge amounts of data
 - Optical coherence tomography: 50GB per image volume
 - Multiphoton time-lapse imaging: 10's GB per stack
 - DiSPIM: 1-2 TB per image volume
- Very little of this data is information; the key information is contained within images and needs analysis and quantification
Current Inefficiencies

- Most students and fellows in my field are trained in small-scale, matlab-based analysis
- These skills do not scale well to medium-to-large datasets
- Typical pattern: One day of experimentation requires a week or more of manual analysis
Goal: “Cognitive Offloading”

- Much of image analysis involves comparison of signals (e.g. brightness) and pattern matching.
- Can we remove this burden from the researcher and move it to a fully automated stack?
- The key motivation is to make these analysis background processes that run overnight and deliver actionable information.
- Shorten the acquisition-analysis cadence and give students/fellows more opportunities to experiment and innovate.
Modular Image Analysis Pipeline

Gonzales and Evans, BioEssays, 2019, 190004
Modular Pipelines with Deep Learning

Example 1: Digital Cytometry to Detect Low Levels of Leukocyte-Antigen Binding

Example 2: Dermal Pharmacokinetics Measured *in situ* with Coherent Raman Imaging
MUC16/CA125 has an Immunomodulatory Role

CA125-immune cell interactions suggest that the antigen binds to immune cells, blunting immune activity and potentially altering immune recognition of cancer.

Key Challenge: only 10-100 estimated binding events per cell
Digital Cytometric PNP Immunoassay

Antibody conjugated gold nanoparticles (PNPs) + Peripheral blood mononuclear cells (PBMCs) → PNP-bound PBMCs

Dark-field Microscopic imaging

Number of Cells

Number of PNPs on a single cell

Health control

Ovarian cancer
Nanoparticle Color Encodes Quantity

(a) Nanoparticle image showing different structures:
- Monomer (Green)
- Dimer (Yellow)
- Trimer (Red)

(b) Graph showing normalized plasmonic scattering vs. wavelength (nm):
- PSMAc
- Green PNPs
- Yellow PNPs
- Red PNPs

Wavelength (nm) range: 450 to 700 nm
Selectively Imaging PNPs with Dark Field

Challenge: 10’s of TB of high resolution, 3D cell data

Solution: Fully Automated Imaging processing stack incorporating Deep Learning
Digital Cytometry

Step 1: Recognize Cell Boundaries
- Autoencoder

Step 2: Detect individual NPs
--> Laplacian of Gaussian
→ Unet

Digital Counting method is the cytometric equivalent to photon counting. Nonspecific binding should be Poissonian noise!
Building a Pipeline from Scratch

Considerations

1. Metadata, filename, and folder naming conventions
 - Early in the process developed a metadata format and consistent file naming convention to encode important information
 - Expandable, so that could store unanticipated values later
 - File naming system stored additional time, date, user, program, sample values
 - Folder system for separating datasets that supported automated data import

2. Data storage for medium-side laboratory scale analysis
 - Coded human samples as part of IRB study required (at the time) in-house storage
 - QNAP NAS ~50 TB at start with expansion potential
 - Purchased higher-end Intel i7 version so that NAS could compute

3. Data upload and backup
 - Created synchronous folders on acquisition PC that uploaded after each experiment
 - NAS continuously synchronized with off-site cloud storage
Building a Pipeline from Scratch

Key Implementation Steps

1. Reading in and converting each file
2. Identifying each cell in a field of view
3. Identifying the boundary of each cell
4. Classifying the type of each cell
5. Finding and counting the number of bound nanoparticles per cell, per cell type
6. Generating quality control output for each analyzed image
7. Creating a CSV file output that summarizes the findings
8. Moving to the next image and starting again

Blue steps are those that began manual and transitioned to machine learning

Manual labeling key in generating the “ground truth” needed for deep learning training
Modular Pipeline: Step by Step

Phase I
- **Fields of View**
- **Cell Detection**
- **Cell Analysis**
- **Quality Control**
- **Data Aggregation**

“Cell Shooter” “PNP Picker”
- Manual Inspection
- Jupyterlab

“Cell Shooter” Unet
- Djanjo
- Jupyterlab

Autoencoder Unet
- Djanjo
- Automated
Pipeline coded in Python 2.7 with numpy, imageio, tifffile, keras, and tensorflow libraries

Scripting was carried out using bashscript, with timing controlled by the cron

The “cell shooter” and “PNP picker” applications were written in python and tk/tcl; the pipeline would run until it exhausted each step.

Deep learning-based image analysis carried by:
- An autoencoder for cell and cell boundaries
- A 3-payer 3D Unet for detecting PNPs on cells
Translating Code to Containers

Each major module was encapsulated in a Docker container:

1. File Parsing, Cell Location, Cell Boundary Detection
2. PNP Counting, Cell Lineage, QC compilation
3. Django server for QC inspection

Docker containers were run using the “Container Station” application on the QNAP NAS

Eventually all calculations ran on the NAS, including model inference

Entire platform can be easily pushed to a cloud provider (GCP, Azure)
Speeding up: K8’s

We experimented with using Kubernetes container orchestration to accelerate data analysis. Though we first used GCP, we eventually built out our own K8 cluster (1 master and 3 nodes).

Each pod contained all the libraries needed for processing a given image, with a pod dispatched for each new image.

5X speed increase over serial containers
Example 2: Skin Inflammation

Collection of skin diseases that cause itch, redness and rash, also known as eczema.

Affects >245 Million people worldwide, atopic dermatitis being the most common. Atopic dermatitis affects up to 30% of people in the US.

New treatment approach is to target the JAK pathways to control inflammation.

Ruxolitinib
Skin Structure
Coherent Raman Scattering (CRS) Microscopy

Imaging based on intrinsic vibrational contrast

Two Colors: \(\omega_p \) “Pump”
\(\omega_s \) “Stokes”
Coherent Raman Scattering (CRS) Microscopy

Imaging based on intrinsic vibrational contrast

Two Colors: \(\omega_p \) “Pump”
\(\omega_s \) “Stokes”

\[\omega_p - \omega_s = \Omega_{vib} \]
Drug Uptake Dynamics in the Stratum Corneum

SRS Microscopy
Nitrile Stretch: 2250 cm⁻¹
100% resonant signal
120 min

Direct visualization of Rux depositing on the surface of skin without background signal
Image-based PK Challenges

• Understanding skin PK requires that the time-evolving drug images be analyzed in the context of skin biology and structure.

• **BUT:** Skin is *highly heterogeneous and complex*, meaning that standard feature identification algorithms have unacceptable failure rates.

• Poor analytical methods can introduce bias, which would skew results and deliver incorrect PK information.
Multidepth Drug Tracking

Quantifying PK with Deep Learning

Detecting skin compartments can be challenging: irregular size, shape, connectivity, etc.

Machine learning provides a robust method for consistent feature detection.

We use a Unet full-convoluted Convolutional Neural Network (CNN) architecture that won the ISBI challenge.
Quantifying PK with Deep Learning

- Annotations to each image were provided by image experts
- Annotations were hand-drawn in either Photoshop or GIMP,
- Trained individual Unets for 2D images, even when using 3D data
 - This minimized the memory required and simplified training
 - Avoided issues of uneven sampling in z-axis
 - Not all 3D datasets contain features of interest. Required “balancing the set” to make sure feature-containing images are not in the minority
New Fully Automated Pipeline

- Coded workflow in Python with OpenCV and Tensorflow
- Runs nightly, finds new data, carries out full automated analysis
 - Finds new, unanalyzed data
 - Reads in data into database
 - Runs conversion and deep learning analysis
 - Calculates PK profiles on in-memory data
 - Runs Quality Control each step
 - Saves all output to standard numpy files for later parsing
Interactive Data Analysis

• Built a Jupyterlab/Python based interactive environment
• Parses directories, loads in numpy saved files
• **Builds an in-memory dataframe using Pandas that can be queried to find specific experiment details** (e.g. drug, formulation, depth, experiment type, etc)
• Queries can be used to parse specific data types to extract images, composite data, QC outputs
• PK analysis then carried out on queried data output using R-based non-compartmental analysis
Details and Containers

Hardware: System76 Leopard WD Xeon-2145 equipped with (1) Quadro P6000

Pipeline image analysis in Python 3 with numpy, javabridge, python-bioformats, keras, and tensorflow libraries

PK analysis carried out using R using rpy2; R needed for specific pharmacokinetic analysis packages

Scripting was carried out using bashscript, with timing controlled by the systemd timers

Jupyterlab server chosen over Jupyter Notebooks as it provided a better interactive coding environment

Entire platform encapsulated with a Docker container (Ubuntu 18.04) for easy deployment
Heterogenous intercellular uptake of ruxolitinib in transcutol through the SC
PK profiles show that primary route of entry is through the hair follicle and sebaceous gland when ruxolitinib is administered in transcutol.

Can observe the downward “wave” of the drug at the t_{max} peaks in the AD and SCF.
Translation to the Clinic

- Model systems do not exactly mimic native skin
 - *Ex vivo* human skin testing is established in field
 - Cadaver or biopsy required
 - Difficult to study disease state
 - Non-invasive *in vivo* human skin imaging at disease sites, over time will give unprecedented information about PK/PD for cutaneous drug & formulation development

Next Steps

- Generalizing the pipeline
 - Rewritten pipeline in Python 3
 - Working to create distinct plug-in structure where modules can be written/loaded by team members

- Scaling the pipeline
 - Data from clinical instruments will be 10X greater than current
 - Looking at cloud platforms (Azure, AWS, GCP) for scaling

- Container distribution for reproducible computing
 - So far have used Docker, but now looking at Singularity