Interactive scRNA-Seq analysis with the Single Cell Toolkit (SCTK)

Evan Johnson and Josh Campbell
Division of Computational Biomedicine
Boston University School of Medicine

May 1, 2020
Single Cell Toolkit (SCTK)

- Standard R package w/Shiny toolkit
- Interacts and operates on an SCE (SingleCellExperiment) object
- SCE object in/out of Shiny any stage
- Great for common tasks:
 - Interactive clustering/visualization
 - Differential gene/pathway analysis
- (Also works for bulk RNA-seq analysis)
“inDrops” is custom microfluidics device that can process large numbers of cells with high capture rates.

Goals of parent R33:

- **Aim 1.** Optimize inDrops for microscopic samples and fixed cells.
- **Aim 2.** Optimize inDrops for low-cost, high-throughput, high sensitivity targeted transcriptomics.
- **Aim 3.** Integrate single cell genomics with histopathology.
Aims of ITCR-IMAT collaboration

IMAT (HMS - Klein)
Aim 1: Develop a Total-seq protocol for the inDrop system.

Aim 2: Develop single cell ATAC-seq for inDrop.

ITCR (BU – Johnson/Campbell)
Aim 1: Develop computational modules for analysis and display of single-cell Total/CITE-seq and ATAC-seq data generated from tumor specimens.

Aim 2: Develop computational modules for comprehensive assessment and correction of batch effects or sample-specific effects across tumor specimens.
Aim 1: Develop computational modules for analysis and display of single-cell CITE-seq and ATAC-seq data generated from tumors.

Total-Seq/CITE-seq antibody derived tags (ADTs) can be used to measure protein levels at single cell resolution.

ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) is a technique used in molecular biology to assess genome-wide chromatin accessibility.
Comprehensive scRNA-seq QC pipeline for the Human Tumor Atlas Network (HTAN)

1. **Raw Data**
 - Single cell/nuc RNA-seq
 - 10X
 - inDrops
 - CEL-seq2
 - Drop-seq
 - SMART-seq2

2. **Preprocessing**
 - CellRanger
 - STARsolo
 - BUStools
 - dropEST
 - HCA Optimus
 - SEQC
 - **SCTK**
 - Import into R
 - SingleCellExperiment
 - MultiAssayExperiment

3. **Quality control**
 - Standard metrics
 - Doublets
 - Ambient RNA
 - Empty Drop Detection
 - Interactive visualization and analysis

SEQC
Comprehensive scRNA-seq QC pipeline for the Human Tumor Atlas Network (HTAN)
Expansion to include import functions for Total-seq/CITE-seq or scATAC-seq data in R data containers.

1. Raw Data
 - Single cell/nuc RNA-seq
 - 10X
 - inDrops
 - CEL-seq2
 - Drop-seq
 - SMART-seq2
 - CITE-seq/Total-seq
 - 10X
 - inDrops
 - scATAC-Seq
 - inDrops
 - 10X

2. Preprocessing
 - CellRanger
 - STARsolo
 - BUSTools
 - dropEST
 - HCA Optimus
 - SEQC

3. Quality control
 - Standard metrics
 - Doublets
 - Ambient RNA
 - Empty Drop Detection

Interactive visualization and analysis

Import into R

SCTK

SingleCellExperiment
MultiAssayExperiment

SCTK
Developing novel statistical approaches for joint clustering of ADT (protein) and scRNA-seq data.

https://github.com/campbio/celda/
Develop computational modules for analysis and display of single-cell ATAC-seq data generated from tumors.

Fast and Accurate Clustering of Single Cell Epigenomes Reveals Cis-Regulatory Elements in Rare Cell Types

Rongxin Fang, Sebastian Preissl, Xiaomeng Hou, Jacinta Lucero, Xinxin Wang, Amir Motamedi, Andrew K. Shiau, Eran A. Mukamel, Yanxiao Zhang, M. Margarita Behrens, Joseph Ecker, Bing Ren

![Barcode Selection](image1)

A Barcode Selection

![Selection of Principal Components](image2)

B Selection of Principal Components

![Visualization of clusters](image3)

C Visualization of clusters

![Peak visualization](image4)

D Peak visualization
A benchmark of batch-effect correction methods for single-cell RNA sequencing data

Aim 2: Develop computational modules for comprehensive assessment and correction of batch effects or sample-specific effects across tumors.

Batch correction tools implemented in SCTK:
1) ComBat/ComBat-Seq
2) Seurat3 Integration
3) Harmony
4) scMerge
5) FastMNN
6) MNncorrect
7) BBKNN
8) LIGER
9) scGEN
10) Scanorama
11) ZinB-wave

Tran et al, Genome Biology, 2020
Mean-variance dependence in RNA-seq counts:
- Over-dispersion (variance > mean)
- Genes with smaller counts tend to have larger variance

Negative Binomial (NB):

\[y \sim NB(\mu, \phi) \]

- Negative Binomial regression used in edgeR & DESeq2
- Variance is a function of mean
 \[\text{var}(y) = \mu + \phi \mu^2 \]

Law, Charity W., et al. "voom: Precision weights unlock linear model analysis tools for RNA-seq read counts." Genome biology 2014
ComBat-Seq algorithm

1. Fit Negative Binomial regression model
2. Obtain batch effect estimates

1. Compute "batch-free" distribution
2. Quantile adjustment
ComBat-Seq algorithm: Model

Negative Binomial regression

Gene-wise model: for a certain gene \(g \), count in sample \(j \) from batch \(i \)

\[y_{gij} \sim NB(\mu_{gij}, \phi_{gi}) \]

\[
\log \mu_{gij} = \alpha_g + X_j\beta_g + \gamma_{gi} + \log N_j \\
Var(y_{gij}) = \mu_{gij} + \phi_{gi}\mu_{gij}^2
\]

Decompose scaled counts into 3 components

\[
\begin{align*}
\alpha_g & \quad \text{Average level for gene } g \text{ (in “negative” samples)} \\
X_j\beta_g & \quad \text{Biological condition of sample } j \\
\gamma_{gi} & \quad \text{Mean batch effect} \\
\phi_{gi} & \quad \text{Variance batch effect}
\end{align*}
\]
ComBat-Seq algorithm: Adjust

Adjust the data

- Calculate parameters for “batch-free” distribution: $y_{gj}^* \sim NB(\mu_{gj}^*, \phi_g^*)$

\[
\log \mu_{gj}^* = \log \hat{\mu}_{gij} - \hat{\gamma}_{gi}
\]

\[
\phi_g^* = \frac{1}{N_{batch}} \sum_i \hat{\phi}_{gi}
\]

- Map quantiles from empirical distribution to the batch-free distribution
ComBat-Seq algorithm: Adjust

Adjust the data

Original count matrix

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>G2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G3</td>
<td>112</td>
<td>11</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adjusted count matrix

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>G2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G3</td>
<td>60</td>
<td>47</td>
</tr>
<tr>
<td>…</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Empirical distribution of original counts:

\[y_{gij} \sim NB(\hat{\mu}_{gij}, \hat{\phi}_{gi}) \]

Batch-free distribution for adjusted counts:

\[y_{gj}^* \sim NB(\mu_{gj}^*, \phi_g^*) \]
ComBat Methods for scRNA-seq Analysis

ComBat-Cell-Seq
- Include cell types in ComBat design model

ComBat-Seq
- Okay if combining batches with ‘balanced’ cell types

ComBat-SVA-Seq
- Use SVA to identify surrogate cell-type variability

Flowchart
1. Are cell types known? (or discoverable)
 - Yes: ComBat-Cell-Seq
 - No: ComBat-Seq
2. Are cell types expected to be balanced?
 - Yes: ComBat-Seq
 - No: ComBat-SVA-Seq
ComBat-Seq for Balanced Designs (ComBat-Cell-Seq, ComBat-Seq)
ComBat-Seq for Balanced Designs (ComBat-Cell-Seq, ComBat-Seq)
ComBat-Seq for Unbalanced Designs (ComBat-Cell-Seq, ComBat-SVA-Seq)
ComBat-Seq for Unbalanced Designs (ComBat-Cell-Seq, ComBat-SVA-Seq)
ComBat-seq Summary

For balanced designs:
- **ComBat-Seq, ComBat-Cell-Seq, ComBat-SVA-Seq** all work well!

For unbalanced designs:
- **ComBat-Seq**: May remove cell-type specific variation
- **Combat-Cell-Seq**: Performs extremely well
- **Combat-SVA-Seq**: Not quite as good as Combat-Cell-Seq, but performs well in both simulated and real-data examples