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High-throughput truthing (HTT) Collaborators
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Collaboration of Volunteers

Engage stakeholders through the Alliance for Digital Pathology 

Involve experts & the community.

Pathologists Academia Health 
Systems

Associations Industry



Project mgmt.
 Sarah Dudgeon, MPH

o FDA/CDRH/OSEL/DIDSR

caMicroscope team
 Ashish Sharma, PhD

o Emory University Department of Biomedical 
Informatics

 Joel Saltz, MD PhD
o Dept. of Biomedical Informatics, Stony Brook 

Medicine

 Nan Li, MS
o Dept. of Biomedical Informatics, Stony Brook 

Medicine

PathPresenter team
 Matthew Hanna, MD

o Memorial Sloan Kettering, New York, NY

 Rajendra Singh, MD
o Icahn School of Medicine at Mt Sinai

 Krushnavadan Acharya, MCA
o PathPresenter

Slides and Clinical

 Roberto Salgado
o Peter Mac Callum Cancer Center; GZA-ZBA 

Hospitals
o International Working Group for TILs in 

Breast cancer

 Denis Larismont
o Institut Jules Bordet

Statistics

 Si Wen
o FDA/CDRH/OSEL/DIDSR

 Manasi Sheth
o FDA/CDRH/OPEQ/OCEA/Biostatistics

 Chava Zibman
o FDA/CDRH/OPEQ/OCEA/Biostatistics

 Weijie Chen, PhD
o FDA/CDRH/OSEL/DIDSR
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HTT Core Collaborators

Committee
 Mohamed Amgad, MSc

o Emory University School of Medicine, Atlanta, 
GA

 Rajarsi Gupta, MD, PhD
o Renaissance School of Medicine and Dept. of 

Biomedical Informatics, Stony Brook Medicine

 Steven N. Hart, PhD
o Mayo Clinic, Rochester, MN

 Joe Lennerz, MD, PhD
o Massachusetts General Hospital, Boston, MA

 Richard Huang, MD, MS
o Massachusetts General Hospital, Boston, MA

 Anant Madabhushi, PhD
o Case Western Reserve University

 Kyle J. Myers, PhD
o FDA/CDRH/OSEL/DIDSR

 Open door policy



Demonstration project
 Collect multi-reader image annotations to establish 

biomarker truth

 Annotations support validation of an algorithm

 Pursue an FDA Medical Device Development Tool 
Qualification

 Application: Stromal Tumor Infiltrating Lymphocytes 
are prognostic in breast cancer

siim.org | #SIIM20 | @SIIM_Tweets 5

High-throughput truthing (HTT) Project

https://www.fda.gov/medical-devices/science-and-research-medical-devices/medical-device-development-tools-mddt


Standardized Annotations Yield a Biomarker

siim.org | #SIIM20 | @SIIM_Tweets 6

 Quantitative 
Biomarker

 Density: 0-100



Standardized Annotations Yield a Biomarker
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 Pathologist
o Takes time
o Requires training
o Noisy
o Board Certification

 Algorithm
o Fast
o Requires training
o Reproducible
o Regulatory permission



Standardized Annotations Yield a Biomarker
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 Pathologist
o Takes time
o Requires training
o Noisy
o Board Certification

 Algorithm
o Fast
o Requires training
o Reproducible
o Regulatory permission

Literature
Examples with truth

(feedback)

Literature
Examples with truth

(feedback)



Standardized Annotations Yield a Biomarker
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 Pathologist
o Takes time
o Requires training
o Noisy
o Board Certification

 Algorithm
o Fast
o Requires training
o Reproducible
o Regulatory permission

Evaluate performance
Requires truth

“Truth by pathologist”
Reduce and Account

for
Pathologist Variability



Standardized Annotations Yield a Biomarker
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 Pathologist
o Takes time
o Requires training
o Noisy
o Board Certification

 Algorithm
o Fast
o Requires training
o Reproducible
o Regulatory permission

Evaluate performance
Requires truth

“Truth by pathologist”
• Additional training
• Multiple pathologists 

per region / image
• Sophisticated analysis



Patch to Whole Slide Image
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Zoom Out



Whole Slide Images: Digital Scans of Glass slides
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 Breast Cancer Biopsies

 Square Regions of 
Interest control the 
evaluation areas

Current selection by pathologist:
• Areas in tumor (~50%)
• Areas in tumor margin (~20%)
• Other (~30%)



Whole Slide Images: Digital Scans of Glass slides
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 Breast Cancer Biopsies

 Square Regions of 
Interest control the 
evaluation areas

Study to prepare the study.
Cover the range of scores.



Whole Slide Image to Patient
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Zoom Out



Patients
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 Regulatory submission

 Define the patient population

 HTT project can’t afford to 
sample and annotate all 
subgroups

 Algorithm manufacturer 
responsible for gaps

Subgroup Description
Planned for 

MDDT?

Age
<40 years old Yes

40-60 years old Yes
>60 years old Yes

Breast Cancer 
Subtypes

Luminal A Maybe
Luminal B Maybe

Triple-negative Yes
HER2 positive Maybe
Normal-like Maybe

Breast Cancer 
Stages

0 Yes
I Yes
II Yes
III Yes
IV Yes

Patients After 
Therapy

Therapy 1 No
Therapy 2 No
Therapy 3 No

TILs always look the same.
Background “context” looks different.



Pathology vs. Radiology
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Truth for pathology is challenging
 Pathology images much larger

o Truthing more burdensome … more area!

 Radiology truth often established by pathology evaluation 
of biopsy …

 Alternate tissue stains
o Clear and restain or adjacent tissue

 Outcomes
o Complicated to coordinate
o Cost time and money
o Several steps removed from tissue

Agreement with multiple 
pathologists

Focus on regions of interest

Not the same tissue
Can damage the tissue

http://www.hologic.ca/image-analytics#overlay-
context=closeup-peerview-cad

http://www.hologic.ca/image-analytics#overlay-context=closeup-peerview-cad


Pathology vs. Radiology
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Truth for pathology is challenging
 Pathology images much larger

o Truthing more burdensome … more area!

 Radiology truth often established by pathology evaluation 
of biopsy …

 Alternate tissue stains
o Done on adjacent tissue or requires restaining

 Outcomes
o Complicated to coordinate
o Cost time and money
o Several steps removed from tissue

Agreement with multiple 
pathologists

Focus on regions of interest

http://www.hologic.ca/image-analytics#overlay-
context=closeup-peerview-cad

Not the same tissue
Can damage the tissue

http://www.hologic.ca/image-analytics#overlay-context=closeup-peerview-cad


Pathology vs. Radiology
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Truth for pathology is challenging
 Pathology images much larger

o Truthing more burdensome … more area!

 Radiology truth often established by pathology evaluation 
of biopsy …

 Alternate tissue stains
o Clear and restain or adjacent tissue

 Outcomes
o Complicated to coordinate
o Cost time and money
o Several steps removed from tissue http://www.hologic.ca/image-analytics#overlay-

context=closeup-peerview-cad

Agreement with multiple 
pathologists

Focus on regions of interest

Not the same tissue
Can damage the tissue

http://www.hologic.ca/image-analytics#overlay-context=closeup-peerview-cad


Update: Choices & Challenges
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Data-collection test run
 Alliance Meeting 
 USCAP Annual Meeting
 Feb. 28, 2020

Four workstations
 2 microscopes
 2 digital platform

64 slides (balance sampling within and 
across specimens)
 8 batches of 8 slides
 10 ROIs per slide
 30 minute sessions  

Digital Modes Microscope 
Mode

PathPresenter caMicroscope eeDAP

nReaders 7 8 7

nObs at USCAP 850 300 440

nObs post USCAP 232 572 0

nObs Total 1082 872 440

Total Obs
2394



What does the data look like?
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 Histogram of 
Biomarker Scores

 Many slides yield 
LOW biomarker 
scores

PathP , reader0455 , HTT-TILS-00     
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LOW
biomarker scores

Scores from one reader evaluating 
six ROIs in one case



PathP , reader0455 , HTT-TILS-00     

sTIL densities

Fr
eq

ue
nc

y

0 20 40 60 80 100
0

2
4

6
8

10

What does the data look like?
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 Histogram of 
Biomarker Scores

 Many slides yield 
LOW biomarker 
scores

 Some slides yield 
LOW to MODERATE 
biomarker scores

LOW to MODERATE
biomarker scores,

heterogeneous

Scores from one reader evaluating 
ten ROIs in one case
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siim.org | #SIIM20 | @SIIM_Tweets 22

 Histogram of 
Biomarker Scores

 Many slides yield 
LOW biomarker 
scores

 Some slides yield 
LOW to MODERATE 
biomarker scores

 Some slides yield 
LOW to HIGH 
biomarker scores

LOW to HIGH
biomarker scores,

heterogeneous

Scores from one reader evaluating 
nine ROIs in one case



What does the data look like?
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 Histogram of 
Biomarker Scores

 One reader
 All 64 slides
 10 ROIs per slide

 Oversampling low 
scores

PathP , reader0455 , N = 451

sTIL densities

Fr
eq

ue
nc

y

0 20 40 60 80 100
0

20
40

60
80

10
0

Scores from one reader evaluating 
all ROIs in 64 cases



Agreement: Start with a scatter plot
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Between-reader scores, N = 5
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Combine to 
Symmetrize
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reader5139 reader7281

 Two readers, CAmicroscope, batch001
 Plots scaled log base 10
 Circle size proportional with number of observations
 Flip reader7281 <-> reader5139        ==        Flip x <-> y
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Agreement: Consider all pairs of readers
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Agreement: Consider all pairs of readers

siim.org | #SIIM20 | @SIIM_Tweets 26

Between-reader scores (sym    

readerX

re
ad

er
Y

1 2 5 10 20 50 100

1
2

5
10

20
50

10
0

0.0 0.5 1.0 1.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

Between-reader Score differe     

Average of Log.10(scores)

D
iff

er
en

ce
 o

f L
og

.1
0(

sc
or

es
)

Score differences from 3 readers 
Batch001, N = 346

Bland-Altman Plot

Upper Limit of Agreement

Lower Limit of Agreement

Re
ad

er
 Y

Reader X
Di

ffe
re

nc
es

 o
f L

og
.1

0(
sc

or
es

)
Average of Log.10(scores)

Rotate 
45°

Do differences between an algorithm 
and the pathologists lie within these 

limits of agreement?

Average over 
squared differences
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Truth by pathologists
Pathologist evaluations are noisy
Reduce variability with
• Training
• Multiple pathologists per case

Summary
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Truth by pathologists
Pathologist evaluations are noisy
Reduce variability with
• Training
• Multiple pathologists per case

Data Sampling
Range of biomarker scores
Regions within an image

Images from different patient 
subgroups

Summary
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Truth by pathologists
Pathologist evaluations are noisy
Reduce variability with
• Training
• Multiple pathologists per case

Data Sampling
Range of biomarker scores
Regions within an image

Images from different patient 
subgroups

Data analysis
Account for known sources of 

variability and correlations
Multi-reader, multi-case analysis

Clustered and nested data

Summary
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• Statistical methods

• Clinical context and use case

• FDA’s Medical Device Development 
Tool Program

• Device advice
• https://ncihub.org/groups/eedap

studies/wiki/DeviceAdvice
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So sad. Not enough time to discuss.

https://www.fda.gov/medical-devices/science-and-research-medical-devices/medical-device-development-tools-mddt
https://ncihub.org/groups/eedapstudies/wiki/DeviceAdvice


 We are collecting data to
o Build collaborative relationships
o Investigate methods and tools
o Support the evaluation of AI/ML

 We hope to
o Inform regulatory decision making
o Improve submissions
o Support and enable interoperability
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Closing



More information
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Learn about the project Participate in Data Collection

https://nciphub.org/groups/eedapstudies/wiki/HighthroughputTruthingYear3https://nciphub.org/groups/eedapstudies/wiki/HighthroughputTruthingYear2

https://nciphub.org/groups/eedapstudies/wiki/HighthroughputTruthingYear3
https://nciphub.org/groups/eedapstudies/wiki/HighthroughputTruthingYear2

	Slide Number 1
	Conflicts of Interest
	High-throughput truthing (HTT) Collaborators
	HTT Core Collaborators
	High-throughput truthing (HTT) Project
	 Standardized Annotations Yield a Biomarker
	 Standardized Annotations Yield a Biomarker
	 Standardized Annotations Yield a Biomarker
	 Standardized Annotations Yield a Biomarker
	 Standardized Annotations Yield a Biomarker
	Patch to Whole Slide Image
	Whole Slide Images: Digital Scans of Glass slides
	Whole Slide Images: Digital Scans of Glass slides
	Whole Slide Image to Patient
	Patients
	Pathology vs. Radiology
	Pathology vs. Radiology
	Pathology vs. Radiology
	Update: Choices & Challenges
	What does the data look like?
	What does the data look like?
	What does the data look like?
	What does the data look like?
	Agreement: Start with a scatter plot
	Agreement: Consider all pairs of readers
	Agreement: Consider all pairs of readers
	Slide Number 27
	Slide Number 28
	Slide Number 29
	So sad. Not enough time to discuss.
	Closing
	More information

