

# **Evaluation and Regulatory Considerations for Al Methods in Medical Imaging**

### Berkman Sahiner, PhD

US Food and Drug Administration CDRH/OSEL

Division of Imaging, Diagnostics and Software Reliability

# Center for Devices and Radiological Health



 Protect and promote the health of the public by ensuring the safety and effectiveness of medical devices and the safety of radiation-emitting electronic products



# Division of Imaging, Diagnostics and Software Reliability



- Part of Office of Science and Engineering Labs within CDRH
- Support the mission the through investigating issues related to
  - Medical imaging
  - Computer-assisted diagnosis
  - Software reliability
- Major research effort related to assessment of AI/ML systems
- Website: Search for FDA DIDSR

| PI Name                              | Project Title                                                                                                                                  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Weijie Chen                          | Technical and statistical assessment of Al/ML in digital pathology for clinical deployment                                                     |
| Brandon Gallas                       | High-throughput truthing of microscope slides to validate artificial intelligence algorithms analyzing digital scans of same slides            |
| Marios<br>Gavrielides                | Improving pathologist performance for diagnosis of ovarian cancer histological subtypes using machine learning tools                           |
| Stephen Glick                        | Development of a deep learning model observer to assess performance of x-ray breast imaging systems                                            |
| Aria Pezeshk                         | Recurrent conv. networks for nodule detection in thoracic CT scans                                                                             |
| A. Pezeshk and<br>Christian Graff    | Comparison of quality assessment methods for deep-learning-<br>based MR image reconstruction                                                   |
| Aria Pezeshk                         | Assessment of Al systems that use un-annotated or weakly labeled datasets in training                                                          |
| B. Sahiner and<br>Weijie Chen        | Leveraging imperfect post-market reference indices for the evaluation of artificial intelligence and machine learning devices                  |
| B. Sahiner and<br>Alexej<br>Gossmann | Assessment of adaptive machine learning systems: Methods for re-use of holdout sets and application to deep learning systems for medical image |
| R. Zeng and<br>Christian Graff       | Deep learning-based image reconstruction and denoising in radiological imaging                                                                 |

### What is a Medical Device?



- 1938 Federal Food, Drug, and Cosmetic Act (FD&C Act):
  - "... an instrument, apparatus, ...
  - intended for use in the diagnosis of disease or other conditions, or
  - in the cure, mitigation, treatment or prevention of disease ..., or
  - intended to affect the structure or any function of the body ..."
- If a product meets this definition, there are FDA regulatory requirements that must be met before it can be marketed in the U.S.

### **Medical Device Classification**



### Risk-based paradigm

| Device Class             | Controls                              | Premarket Review Process                      |
|--------------------------|---------------------------------------|-----------------------------------------------|
| Class I (lowest risk)    | General Controls                      | Most are exempt                               |
| Class II                 | General Controls & Special Controls   | <b>Mostly Premarket Notification</b> [510(k)] |
| Class III (highest risk) | General Controls & Premarket Approval | Mostly Premarket Approval [PMA]               |

## Paths to Market with Premarket Review



- 510(k) clearance: Typically Class II
  - Substantial equivalence to a legally marketed predicate device
- Pre-market approval: Typically Class III
  - Demonstration of reasonable assurance of safety and effectiveness of the subject device
- De-Novo
  - Petition for down classification, typically from Class III to Class II
  - A granted de novo establishes a new device type, a new device classification, a new regulation, and necessary general (and special) controls
  - Once the de novo is granted, the device is eligible to serve as a predicate
  - All the followers are 510(k) devices

# Uses of AI/ML in Medical Image Analysis



- Image filtering and denoising
- Quantitative imaging
- Computer-aided detection (CADe)
  - First reader
  - Sequential reading
  - Concurrent reading
- Computerized detection

- Computer-aided diagnosis (CADx)
  - Presence/absence of disease
  - Severity, stage, prognosis, response to therapy
  - Recommendation for intervention
- Triage
- Many other possibilities

### **CADe Guidances**



Guidance for Industry and
Food and Drug Administration Staff
Computer-Assisted Detection Devices
Applied to Radiology Images and
Radiology Device Data - Premarket
Notification [510(k)] Submissions

Document issued on: July 3, 2012

The draft of this document was issued on October 21, 2009.

For questions regarding this guidance document contact Nicholas Petrick (OSEL) at 301-796-2563, or by e-mail at <a href="Micholas.Petrick@fda.hhs.gov">Micholas.Petrick@fda.hhs.gov</a>; or Mary Pastel (OIVD) at 301-796-6887 or by e-mail at <a href="Mary.Pastel@fda.hhs.gov">Mary.Pastel@fda.hhs.gov</a>.

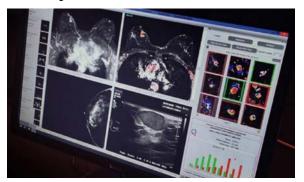
## Guidance for Industry and FDA Staff

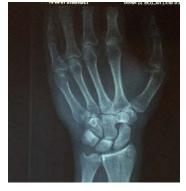
Clinical Performance Assessment:
Considerations for Computer-Assisted
Detection Devices Applied to Radiology
Images and Radiology Device Data Premarket Approval (PMA) and
Premarket Notification [510(k)]
Submissions

Document issued on: July 3, 2012

The draft of this document was issued on October 21, 2009.

For questions regarding this guidance document, contact Nicholas Petrick (OSEL) at 301-796-2563, or by e-mail at <a href="Micholas.Petrick@fda.hhs.gov">Nicholas.Petrick@fda.hhs.gov</a>; or Mary Pastel (OIVD) at 301-796-6887 or by e-mail at <a href="Mary.Pastel@fda.hhs.gov">Mary.Pastel@fda.hhs.gov</a>.


## Many New DeNovo Devices in the Past 2 Years



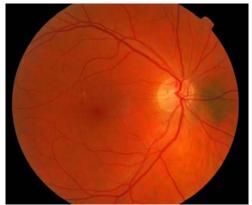

Regulations mostly similar to CADe devices

Computer-Aided Classification of Breast Lesions on Magnetic Resonance Imaging:

Computer-Aided Diagnosis (CADx)






Computer-Aided Detection and Diagnosis of Fractures on Radiographs:

CADe + CADx

Notification of Specialists for Suspicion of Stroke on Computerized Tomography Images:

Radiological Computer Aided Triage





Detection of Diabetic Retinopathy on Retina Fundus Images:

Retinal Diagnostic Software

#SIIM19 | #ImagingInformatics | @SIIM\_Tweets

# Software as a Medical Device (SaMD)



- Software intended to be used for one or more medical purposes that perform these purposes without being part of a hardware medical device
  - Capable of running on general purpose (non-medical purpose) computing platforms
  - "Without being part of" means software not necessary for a hardware medical device to achieve its intended medical purpose
    - If it drives a hardware medical device, it is not SaMD

#### Software as a Medical Device (SAMD): Clinical Evaluation

## **Guidance for Industry and Food and Drug Administration Staff**

Document issued on December 8, 2017.

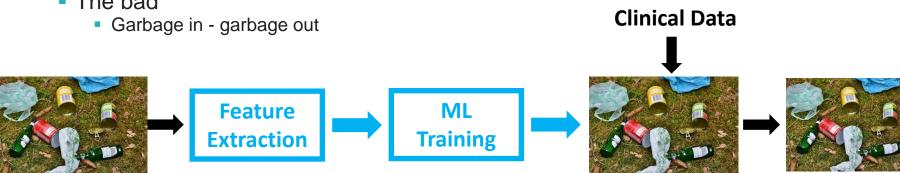
The draft of this document was issued on October 14, 2016.

# Fundamentals of AI/ML Based Image Analysis SaMD



- Device description
- Data
- Performance assessment
  - Standalone performance
  - Reader performance (when appropriate)
  - ...
- Human factors or other information/testing as appropriate
- **-** . . .

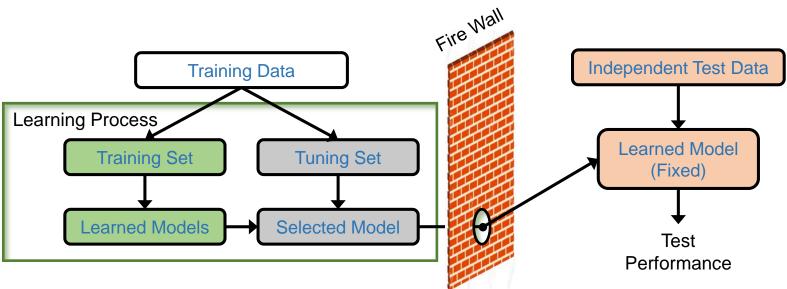
### **Device Description**




- Device & algorithm descriptions
  - Device usage (mode, of operation, patient population, ...)
  - Algorithm design and function
    - Including structure of traditional and deep learning networks
    - Inputs
      - Type and range of signals/data
    - Outputs
  - Training process
  - Training/test database
  - Reference standard
  - ...

### Data




- ML algorithms are data-driven
  - Versus, for example, physics or biology based
- ML algorithms development now facilitated by standardized ML platforms
  - Brings ML to a wider array of users
  - The good
    - Access to high-quality data streamlines design of novel ML applications
  - The bad



## Performance testing



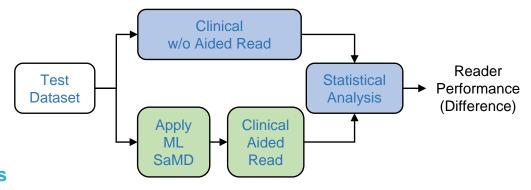
- Performance of ML algorithm on an independent data
  - Ideally, identifies problems with training process




#SIIM19 | #ImagingInformatics | @SIIM\_Tweets

### Performance assessment




#### **Standalone Performance**

- Performance of algorithm alone
- Assesses robustness and generalizability of algorithm



#### Clinical reader performance

- Assessment of clinical aids
- Clinicians' performance utilizing device
  - Multi-reader multi-case designs
  - Compare clinician's performance with the ML SaMD aid to without the aid



#SIIM19 | #ImagingInformatics | @SIIM\_Tweets

## An New Regulatory Challenge



- Traditionally, algorithm changes that significantly affect the device's performance, would require a new submission to the FDA, as per the Software Modifications Guidance
- Ideally, devices incorporating ML keep learning after release
  - Ever enlarging data sets for algorithm training
  - New types of input
  - New architectures/models
- How can the FDA provide oversight to adapting devices in a manner that is aligned with the technology's lifecycle?

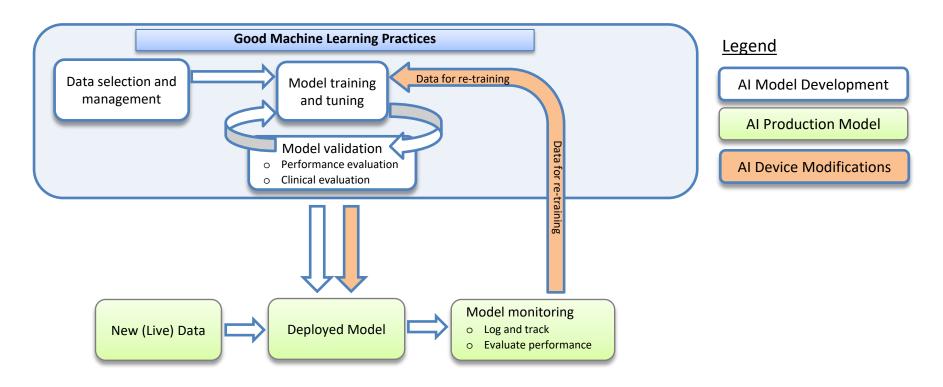
# Proposed Regulatory Framework for Modifications to AI/ML Algorithms



- An option to submit a plan for modifications during the initial premarket review of an AI/ML-based SaMD
- Reviewed during initial premarket phase
  - SaMD performance
  - Plan for modifications
  - Ability to manage/control resultant risks of modifications
- Comment period formally ended June 3<sup>rd</sup>

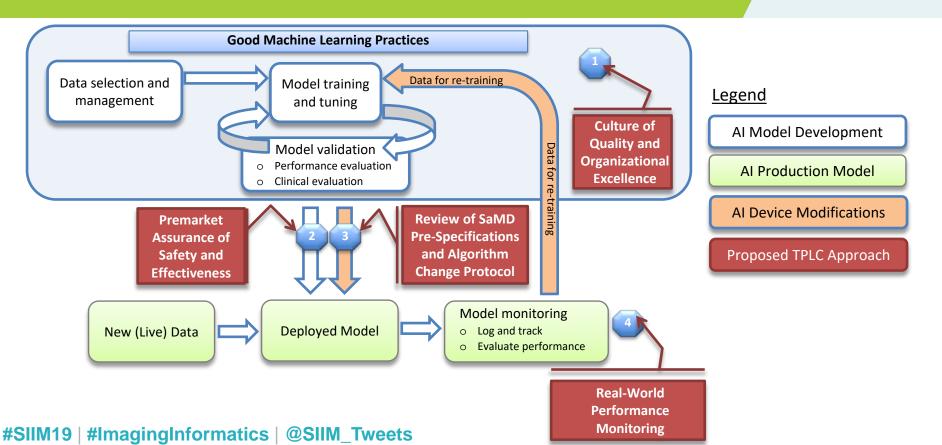


https://www.regulations.gov/document?D=FDA-2019-N-1185-0001


### A Pre-Determined Change Control Plan



- SaMD Pre-Specifications (SPS):
  - Delineates the proposed types of modifications to the SaMD
    - What types of changes the does the sponsor plan to achieve
- Algorithm Change Protocol (ACP):
  - Describes the methods for performing and validating the changes pre-specified in SPS
    - How does the sponsor intend to achieve the changes
  - Typically specific to the device and type of change
  - Expected to contain a step-by-step delineation of the procedures to be followed
- Good ML Practices (GMLP):
  - Accepted practices in AI/ML algorithm design, development, training, and testing that facilitate
    the quality development and assessment of AI/ML-based algorithms
  - Based on concepts from quality systems, software reliability, machine learning, and data analysis, etc.


### **Current Al/ML Workflow**

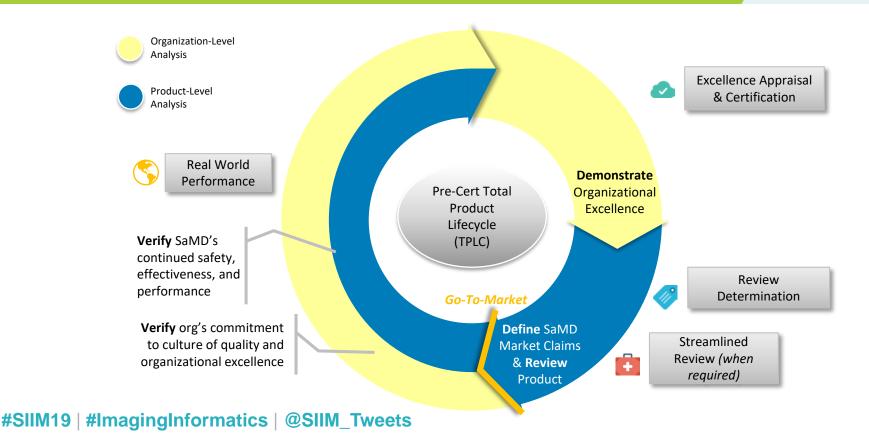




## FDA's Proposed Approach






# Software Precertification Pilot Program



- Voluntary pathway
- Streamlined and efficient regulatory oversight of software based-medical devices for manufacturers who demonstrate
  - Robust culture of quality
  - Organizational excellence (CQOE)
  - Commitment to monitoring real-world performance
- Latest working model: v1.0 Jan. 2019
  - https://www.fda.gov/media/119722/download
- Continue to build and refine the current working model

### **Total Product Lifecycle Approach** of the Software Pre-Cert Program





# Relevant Guidances, Regulations and Discussion Papers



#### Guidances

- CADe: <a href="http://www.fda.gov/RegulatoryInformation/Guidances/ucm187249.htm">http://www.fda.gov/RegulatoryInformation/Guidances/ucm187249.htm</a>
- SaMD evaluation: https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm524904.pdf

#### Draft guidances and discussion papers

- Quantitative Imaging: <u>https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM6</u> <u>36178.pdf</u>
- Modifications to Al/ML Software <a href="https://www.regulations.gov/document?D=FDA-2019-N-1185-0001">https://www.regulations.gov/document?D=FDA-2019-N-1185-0001</a>

#### Regulations/reclassification orders

- CADx: <a href="https://www.accessdata.fda.gov/cdrh\_docs/pdf17/den170022.pdf">https://www.accessdata.fda.gov/cdrh\_docs/pdf17/den170022.pdf</a>
- CADx+CADe: https://www.accessdata.fda.gov/cdrh\_docs/pdf18/DEN180005.pdf
- Triage: <a href="https://www.accessdata.fda.gov/cdrh\_docs/pdf17/DEN170073.pdf">https://www.accessdata.fda.gov/cdrh\_docs/pdf17/DEN170073.pdf</a>
- Retinal diagnosis: <a href="https://www.accessdata.fda.gov/cdrh\_docs/pdf18/DEN180001.pdf">https://www.accessdata.fda.gov/cdrh\_docs/pdf18/DEN180001.pdf</a>

### Summary



- AI/ML Software as a Medical Device review
  - FDA has substantial guidance on ML SaMD assessment
  - A number of DeNovo devices for image analysis that use machine learning
    - Opens the path for similar devices through 510(k) pathway
  - FDA's approach to SaMD is evolving
    - Precertification of organizations
    - Streamlining review processes for updates to ML SaMD
- AI/ML device assessment considerations
  - Data
    - Source, patient population, reference standard, ...
  - Performance testing
    - Standalone testing
    - Reader performance assessment (when appropriate)
  - ...

## Acknowledgements



 Drs. Nick Petrick and Matthew Diamond contributed substantially to the preparation of this presentation