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Goals

* We are combining multiscale mathematical
approaches with novel cellular quantification
experimental technologies in order to:

— To gain a deeper, more robust understanding of
tumor-immune dynamics

— To optimize combination immunotherapy and
receptor kinase targeted therapy
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Aggressive Bladder Cancer Mutations

Figure credit: https://www.medscape.com/viewarticle/925321

 Genomic analysis of bladder cancer has identified
frequent alterations of FGFRs, including mutations

of FGFR3 that activate the receptor via ligand-

independent dimerization = increased cell proliferation
and survival.
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Targeted Therapy

* Clinical trials using SMls
of FGFR3 are leading to
promising clinical
responses for patients 1
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Figure credit: https://www.medscape.com/viewarticle/925321
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Immunotherapy
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* MADbs targeting the PD-1/PD-L1 pathway have resulted in
favorable outcomes in advanced bladder cancer.

* Despite the activity of these drugs in some patients, the
objective response rate remains less than 25%.
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Mutations Hinder Immunotherapy
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Combination Therapy

Active FGFR3 Targeting
Dimer FGFR3
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Co-acting combination of potent immune checkpoint

inhibitors and specific FGFR3 inhibitors potentially
offers an advance in targeted therapeutics for cancer.
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Active FGFR3 ,
Dimer Targeting FGFR3
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Optimizing Combination Therapy

Figure Credit: Durvalumab in NSCLC: latest evidence and clinical potential. Ther Adv Med Oncol. 2018

A powerful and practical way to optimize novel drug
combinations for clinical cancer treatment is to use

data-driven computational models.
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Preliminary Data: Live Cell Tracking

* My collaborators
developed a novel
pipeline to track
and quantify the
interactions of

living tumor cells
and immune cells,
including cell death.
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Preliminary Data: Live Cell Tracking
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e Evidence of both rapid and slow killing during tumor-immune interactions.

 The proportion of slow and rapid killing within a solid tumor could have
significant impact on immune mediated anti-cancer effects.
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Impact of Fast/Slow Killing Probabilities
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FGFR3 Mutation

and Immune Dynamics
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Model Predictions: Monotherapies

* We can predict
when targeted
therapy
outperforms the
immune therapy.

 The heatmap shows
the difference
between the
immune and
targeted therapies
on day 25 as the
impact of the
mutation on
proliferation and
survival varies.
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Model Predictions - Combo Therapy
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Comparing Dosing Strategies

Model prediction of tumor volume on day 25
(% reduction in tumor volume relative to no treatment)
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Next Steps: Agent-based Modeling
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Collaborators
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