

Justin M. Fear

IRTA Fellow (NIDDK/NIH)

 Genomics

 Gene Regulation

 Drosophila

Contact:

 @jfear

 justin.fear@nih.gov
http://geneticsunderground.com/talk

About

2

https://github.com/jfear
http://geneticsunderground.com/talk

Find things quickly

Find the code used to generate result

Tweak a plot

Pickup where you left off

> Why Project Organization

4

Share code and results

Send snippets to collaborator

Show colleague what you did

Track tangential analysis

> Why Project Organization

5

Recover from data disasters

Oops we swapped sample
names

Forgot to give you these
addition 10 samples

The �le we sent you was
truncated

I accidentally deleted your
folder on the share drive

> Why Project Organization

6

Reproducible Research

> Why Project Organization

7

Version Control

├── deg_lmm_v1.sh

├── deg_lmm_v2.sh

├── deg_lmm_final.sh

├── deg_jmf_final_v2.sh

If you name something �nal, you
will always have another version.

Work�ow

├── deg_step1_jmf_v1.sh

├── deg_step2_jmf_v1.sh

├── deg_step2a_jmf_v1.sh

├── deg_step3_jmf_v1.sh

Adding or re-ordering steps is
confusing at best.

Poor uses of �le names

Make �le names descriptive and concise.

> Don’t do this

9

Poor uses of folders

One folder to rule them all

Hard to browse ≥ 30 �les

Search requires you to know what you are looking
for

Too many folders

Lots folder levels are hard to browse too

Easy to loose �les

Make your own folder hierarchy and stick to it.

> Don’t do this

10

Comment and Uncomment

Run first

wget ...

export FILE="./this_file.txt"

... 300 more lines of code ...

Run third

export FILE="./that_file.yaml"

do_more_stuff()

Doesn’t track what was done

Generates different results if run in
different order

Copy and Paste

A script is meant to be run

Don’t copy and paste from a script

Beginners often write lots of comments
describing each step. They the copy and
paste from the script onto the command
line.

Poor uses of scripts
> Don’t do this

11

Master Your Weapons

Version Control

Work�ow Tools

Development Environment(s)

13

Version Control System (VCS)

A.K.A track changes

Popular Tools

Git

Mercurial

VCS

CVS

Cloud Storage

Github

GitLab

Bitbucket

Data Is Different

git-lfs

> Master Your Weapons

14

Work�ow Management

Galaxy Snakemake

Make Air�ow

> Master Your Weapons

15

Development Environment

Syntax Highlighting

Code Completion

Refactoring Tools

Debugging Tools

Version control

Containers/Environments

Remote development ove SSH

Text Editors

vim

emacs

nano

> Master Your Weapons

16

Could Development

Examples

VScode Online

Azure Notebooks

Google Colab

Datalore

CoCalc

Binder

Gigantum

Jupyter + RStudio in the cloud

Container based environment

Automatic Version Control

> Master Your Weapons

17

General best practices

Folder Structure

Separate data from scripts

Use work�ow tools to orchestrate

Split out con�guration

Modularize

Use a de�ned style

Use containers and environments

Document everything

Personal preferences

Folder structure

Folder names

Example Project

Project Organization

18

https://github.com/jfear/example_project

> Project Organization 1. Same folder
structure and names
across projects

But, don’t be afraid to tweak

19

├── data # original and external

├── lcdb-references # multi-project

├── output # generate output

Improves mobility

Delineates what you generated

Allows reuse of common data
across projects

I work on multiple computers. I store data in a single
location and mount the drive remotely. I can do
more locally instead of messing with Biowulf.

data # original and external

├── external

│ ├── DroID_DPiM_2018-03-29.txt # website

│ ├── Ferrari_et_al_2006.tsv # paper

│ ├── Ferrari_et_al_2006.readme # paper details

│ ├── FlyBase/ # community

│ └── maria/ # collaborator

├── rnaseq_samples # our data

│ ├── ...

│ └── w1118_LG_m_r4_B_C12.fastq.gz

└── singleCellSeqData # out data

 ├── ...

 └── SV_9_10X_Te/

2. Separate data from code

Data is NOT stored typically in version control

> Project Organization

20

3. Work�ow
Orchestration

./example1-wf

├── config

│ ├── config.yaml

│ └── sampletable.tsv

├── scripts/

└── Snakefile

> Project Organization

21

4. Modularize code

lcdb-wf@56c948d #submodules

src/ # project level package

├── my_project

│ ├── io.py

│ ├── plotting.py

│ └── stats.py

├── tests/

│ ├── test_io.py

│ └── test_stats.py

└── setup.py

> Project Organization

22

Fix ugly code the easy way

for (i in seq(10)) {

for (j in seq(100)) {

if (i == j) {print(TRUE)} else if (i %% j == 0) {

print("modulo")

} else {print(FALSE)}}}

for (i in seq(10)) {

 for (j in seq(100)) {

 if (i == j) {

 print(TRUE)

 } else if (i %% j == 0) {

 print("modulo")

 } else {

 print(FALSE)

 }

 }

}

5. Style guides and
linters

Consistent style improves readability

Google my language and style guide

Linters catch syntax errors and point
out style problems.

pylint # python

lintr # R

Fix ugly code with software

black # python

styler # R

> Project Organization

23

Project con�g

Contains info that is needed across the project.

Project name and github url

Assembly and Annotation

alpha level

Work�ow con�g

Anything you may tweak in the future.

Various thresholds

Work�ow speci�c references

Various Mappings (i.e. �le name to title)

6. Split out con�guration for consistency

./config # Project config

 ├── common.yaml

 ├── gene_sets.yaml

 └── colors.yaml

./example1-wf # Workflow config

 ├── config

 │ ├── config.yaml

 │ └── sampletable.tsv

> Project Organization

24

Containers (Docker, Singularity)

Completely reproducible system
Kernel and Software

Environments (Conda, pipenv)

Install and manage software versions

Different versions of software can be
installed in different environments

7. Containers and environments (portability and

One of the hardest problems in data science is managing software.

./environment.yaml # project env

./envs # specific tools conda envs

 ├── deseq2.yaml

 ├── scrublet.yaml

 ├── seurat2.yaml

 └── seurat3.yaml

> Project Organization

25

What to document (Everything!)

How was the data generated

Record all “experiments”
failed attempts

comparing different methods

Record the reasoning for any decision points

Clearly describe how to get �nal results

> Project Organization > Documentation

27

Where to document (Everywhere!)

Sample/Resource Table

README

Top of scripts

Function/Class Docstrings

Code comments (but not too many)

Literate Programming (i.e. notebooks)

Project Blog

> Project Organization > Documentation

28

Sample Table

./example1-wf

 ├── config

 │ ├── config.yaml

 │ └── sampletable.tsv

Add as much information about your samples.

A1_OCP ….A1_OCP_1.fastq.gz OCP A1 A 1 25 f 0 1 0 A

A6_TCP ….A6_TCP_2.fastq.gz TCP A6 A 6 15 m 1 0 0 B

> Project Organization > Documentation > Where

29

Top of Scripts

Describe what the script does

Any major decisions that you made

Anything to help you remember

> Project Organization > Documentation > Where

30

Any function you will call from another
script.

Add type hints if it is confusing what goes
in.

Add examples to clearly show what the
function does.

Functions and Classes
> Project Organization > Documentation > Where

31

./notebook

 ├── 2019-08-01_bulk_deg.Rmd

 └── 2019-08-10_bulk_ma.ipynb

./docs

 ├── cell_number_counts.ipynb

 └── permutation_summary.ipynb

Jupyter Notebooks

R Notebooks and Rmarkdown

Literate Programming
> Project Organization > Documentation > Where

https://github.com/markusschanta/awesome-jupyter 32

https://github.com/markusschanta/awesome-jupyter

Dedicated Project Blog

Aggregate notebooks
bookdown # R

jupyter webbook # python

Static site generators
Pelican

Nikola

jekyll

> Project Organization > Documentation > Where

33

10 Best Practices

1. Use the same structure and names across projects

2. Separate original data, generated data, and scripts

3. Use work�ows to orchestrate

4. Split out con�guration for consistency

5. Modularize reusable code

6. Use a style guide and linters

7. Use containers and environments

8. Document as you go

9. Document as you go

34

Mine

Example Project

scRNASeq Project

Large Remapping Project

PacBio Project

Others

Cookiecutter Example

Summary of Nobel Paper

Updated concepts Nobel paper

Short Blog Post

Short Blog Post

Links and Examples

35

https://github.com/jfear/example_project
https://github.com/jfear/larval_gonad
https://github.com/jfear/ncbi_remap
https://github.com/jfear/dmel_pacbio
https://drivendata.github.io/cookiecutter-data-science/
https://davetang.org/muse/2018/02/09/organising-computational-biology-projects-cookiecutter/
https://medium.com/outlier-bio-blog/a-quick-guide-to-organizing-data-science-projects-updated-for-2016-4cbb1e6dac71
https://towardsdatascience.com/manage-your-data-science-project-structure-in-early-stage-95f91d4d0600
https://www.thinkingondata.com/how-to-organize-data-science-projects/

