Precision Imaging of Response to Therapy in Co-Clinical FDG-PET Imaging of Triple Negative Breast Cancer (TNBC) Patient-Derived Tumor Xenografts (PDX)

Madhusudan A. Savaikar¹, Timothy Whitehead¹, Sudipta Roy¹, Lori Strong¹, Nicole Fettig¹, Tina Prmeau², Jingqin Luo³, Shunqiang Li², Richard L. Wahl¹, Kooresh I. Shoghi^{1,4}

¹Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA ²Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, USA ³Department of Surgery, Washington University School of Medicine, St. Louis, USA ⁴Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA

Background

- More realistic preclinical cancer models are thought to be provided by transplantable, patient-derived tumor xenografts (PDX).
- Co-clinical trials, in which a clinical arm and a preclinical arm are coupled using PDX or another co-clinical model to develop therapeutic insights, are an emerging field of investigation
- There is a wide interest within the imaging community and NCI to develop a consensus on imaging metrics of response to Therapy.

Objective

- Develop and optimize image metrics of FDG-PET to assess response to combination docetaxel/carboplatin therapy in a co-clinical trial involving triple negative breast cancer (TNBC) patient-derived transplantable xenografts (PDX).
 - Characterize growth kinetics and heterogeneity of TNBC PDX subtypes.
 - Test-retest studies on consecutive days (Day 1 vs Day 2) to assess the reproducibility of FDG-PET SUV image metrics.
 - Therapeutic study with imaging to assess the utility of FDG-PET to predict response to therapy.

Co-clinical Study Design and Characterization of TNBC PDX

Washington University in St. Louis

Savaikar et al., The Journal of Nuclear Medicine, 61(6), 842 (2020)

MIR Mallinckrodt Institute of Radiology

Optimization of Image Metrics for Reproducibility

Therapy Response Assessment

Washington University in St. Louis School of Medicine

MIR Mallinckrodt Institute of Radiology

Imaging Metrics Performance in Predicting Response to Therapy

SUV metric	RC	F score	Uncertain fraction (%)	QRAS
ΔSUV _{max}	0.73	0.73	45	0.45
ΔSUV ₂₅	0.28	0.72	31	0.12
ΔSUV ₂₅ (SS)	0.33	0.74	34	0.15
ΔSUV _{P4}	0.59	0.77	48	0.37
ΔSUV _{P14}	0.47	0.74	34	0.22
ΔSUV _{P33}	0.45	0.69	41	0.27
Max14	0.60	0.78	45	0.35
Max45	0.50	0.82	48	0.30
Max90	0.43	0.78	45	0.25

Savaikar et al., The Journal of Nuclear Medicine, 61(6), 842 (2020)

Conclusions

- The work addressed a central effort within the imaging community on the reproducibility and utility of imaging metrics to assess response to therapy especially in co-clinical models.
- SUV₂₅ ¹⁸F-FDG PET measures are highly reproducible.
- QRAS scores favor SUV₂₅, followed by SUVP₁₄, as the optimal metrics for response to therapy.
- SUV₂₅ strongly correlated with optimized pre-clinical PERCIST measures of tumor uptake and SUV of metabolic tumor.
- Further studies are warranted to fully characterize the utility of SUV₂₅.

