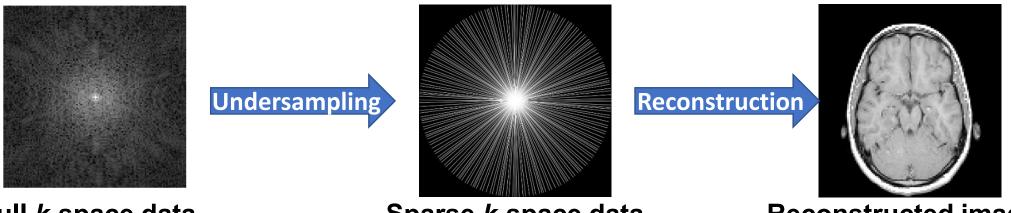
Fast magnetic resonance imaging using adaptive convolutional neural networks for *k*-space data interpolation

Yong Fan Department of Radiology Perelman School of Medicine University of Pennsylvania

Fast MRI with sparse k-space sampling



Full *k*-space data

Sparse *k*-space data

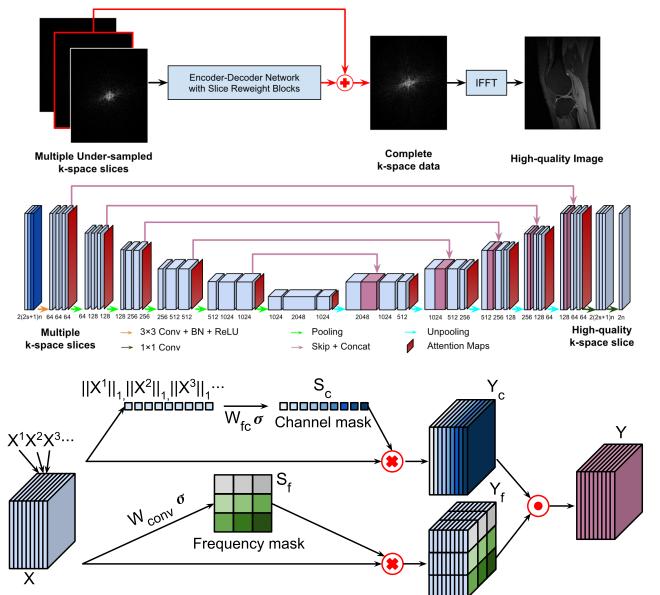
Reconstructed image

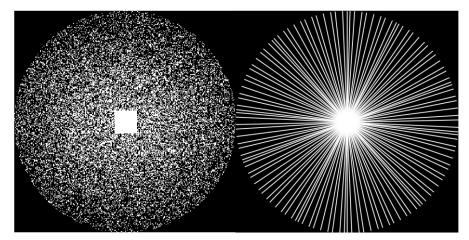
Data interpolation methods for image reconstruction from sparse *k*-space data

- Compressed sensing methods
- Deep learning methods: convolutional neural networks (CNNs)
 - Interpolation in image domain
 - Interpolation in k-space domain
 - Interpolation in both domains

CNNs with shared weights are applied to low- and high- frequency data that contribute differently to the image reconstruction !

Adaptive CNNs for k-space data interpolation

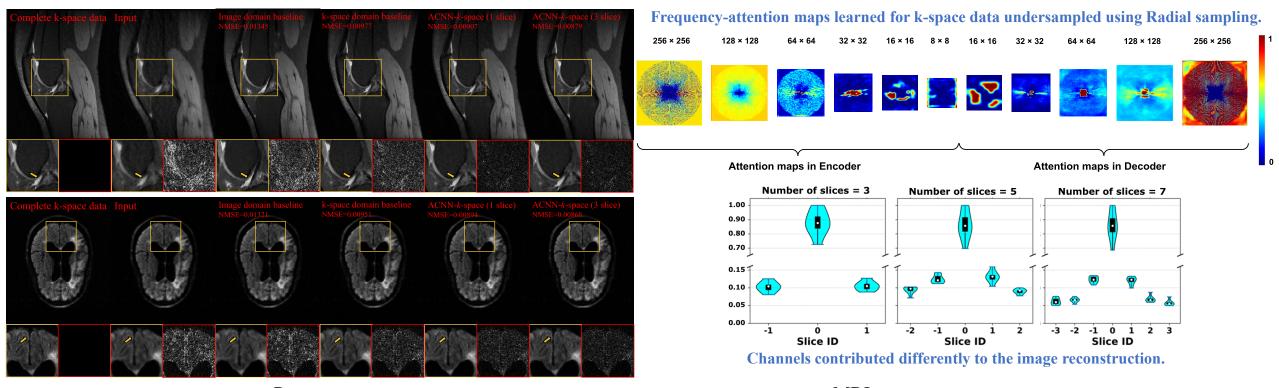




Sampling masks. Left: Cartesian trajectory. Right: Radial trajectory

- We evaluated our method using two publicly available datasets, including Stanford Fully Sampled 3D FSE Knee *k*-space Dataset (available at http://mridata.org/), and fastMRI Brain Dataset (available at https://fastmri.org).
- We compared our method with a recently published *k*-space deep learning method, as well as an image domain deep learning method. Both of these methods were built upon the same U-net architecture.

Performance evaluation based on *k*-space datasets



PERFORMANCE OF METHODS UNDER COMPARISON BASED ON THE FASTMRI BRAIN DATASET.

Methods	Number of input slices	NMSE (× 10^{-3})				PSNR				SSIM (\times 10 ⁻²)			
		Cartesian		Radial		Cartesian		Radial		Cartesian		Radial	
		mean±std	p-value	mean±std	p-value	mean±std	p-value	mean±std	p-value	mean±std	p-value	mean±std	p-value
Image-domain		20.43±0.02	. 1.81e-3	16.16±0.02	2.25e-3	38.25±3.23	6.05e-4	39.74±3.19	7.95e-7	94.11±0.05	1.27e-5	94.46±0.05	6.05e-4
<i>k</i> -space		19.67±0.02	3.34e-2	15.71±0.02	3.62e-6	38.60±2.97	3.39e-4	39.85±3.26	7.49e-3	94.58±0.05	5.27e-6	94.61±0.05	4.81e-9
ACNN-k-Space		18.80±0.02	2.32e-3	15.29±0.02	2.61e-2	38.95±3.20	2.57e-3	40.11±3.27	5.05e-e2	94.62±0.05	8.96e-5	94.86±0.05	5.57e-3
	3	18.30 ±0.02	<u> </u>	14.93 ±0.02		39.16 ±3.03	·	40.39 ±3.30		95.02 ±0.05	- '	95.21 ±0.05	-

Discussion and Conclusions

- Our residual Encoder-Decoder network of CNNs can integrate complementary information of spatially adjacent slices to improve image reconstruction.
- Self-attention layers can effectively integrate complementary information of multiple slices and recognize distinctive contributions of k-space data at different spatial frequencies.
- Ablation studies and comparison experiments have demonstrated that our method could effectively reconstruct images from undersampled k-space data and achieved significantly better image reconstruction performance than state-of-theart alternative techniques.
- Our network is built upon the standard residual Encoder-Decoder network architecture, which could be improved by adopting other network architectures, network blocks, and advanced learning strategies.
- Our method can serve as a basic deep learning component to be integrated with other deep learning methods in a straightforward manner.