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Radiomics features extraction and Quality control
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Treatment response prediction
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Table 1: Error metric for machine learning algorithms

Baseline (BL Difference(4D-BL
Methods aseline erence

Radiomics SUV,; Radiomics SUV,g

Sy
e0|s_|c_)n t_ree 0.27 0.48 0.30 0.38
Classification
Decisi
eC|S|on_tree 0.19 0.29 0.21 0.35
Regression
Supp?rt VECtor 0.21 0.34 0.17 0.26
machine (SVM
Naive Bayes 0.18 0.43 0.21 0.29
E le of
fSembie 0 032 035 029 034
learners

* Error was calculated from the ratio between total number of false
positive (FP) and false negative (FN) to the total number (N).
Accuracy can be calculated from (1-Error).



Conclusions

We identified unique, volume-independent, and reproducible
radiomic feature to assess response to therapy.

MLA was implemented to predict response to therapy with
high-accuracy of >80% using only BL radiomic features as well
from difference between (4D-BL).

MLA was cross-validated to ensure applicability for TNBC PDX.

Additional biomarkers can be used to further enhance
prediction of response to therapy.



