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MR imaging presents multiple
advantages for tumor analysis,
including superior soft tissue contrast
and multiple contrast options.
Metrics such as the apparent
diffusion coefficient (ADC) have
garnered much attention as a
potential biomarker for tumor status.
Tumor MRI/pathology studies have
demonstrated a relationship between
tissue cellularity and ADC, but
reports are inconsistent. We are
working to develop a mechanism for
reliable comparison of “gold
standard” 2D histopathological
sections with MRI images. The
ability to perform these analyses on
large datasets will provide valuable
insight into the biology behind the
MR signal.

INTRODUCTION
1. Construct a digital space with resources to register multi-resolution, multi-parametric imaging data.
2. Generate a pipeline to compare tumor pathology slides and MR data, including in vivo MRI and ex vivo MR histology (MRH).

OBJECTIVES

Figure 1. Schematic for co-registration of high-resolution 3D MRH with cytometric property maps derived from 2D H&E histology slides.
Demonstration of the four phases over which correlative MR studies are performed: (1) Orienting MR to H&E slides by selection of the appropriate 2D plane in
the MR images, followed by non-linear landmarks-based alignment; (2) Implementation of a multi-step machine-learning algorithm for nuclear segmentation
over entire histology slides; (3) Measurement of segmented nuclei and generation of quantitative cytometric feature maps; (4) Correlative studies of tumor MR
signal and cytometric features.
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1.  LINEAR & LANDMARKS-BASED IMAGE REGISTRATION

Registration is performed using 3D Slicer in the
“Image Space” on the following image types (Fig.2):
• H&E tumor cross sections (2D; digitized 40X),

downsampled to 2.0 μm2 for alignment (~200-300 MB)
• MRH images (3D isotropic) at 50 μm3 (~300-400 MB)
• In vivo MRI images (3D) at 100 X 100 X 300 μm (~10-

50 MB)

MRH to histology alignment:
1. Rotational (linear) alignment

• 3D isotropic MRH images are rotated against a
fixed pathology slide until the corresponding slice
is obtained.

2. Tissue shrink
• The selected MRH slice is linearly resized to

correct for tissue shrinkage during histological
prep.

3. Landmarks-based (non-linear) alignment
• 80-120 landmarks are placed on anatomical

structures visible in high-resolution images (Fig. 3).
• A non-linear transformation matrix is generated

based on the identified landmarks and is applied to
all MRH images in the dataset.

In Vivo MRI to histology alignment:
1. Alignment of 3D in vivo MRI to 3D MRH via linear

rotation and landmark-based alignment.
2. MRH-aligned in vivo images are registered to the

histology via transformations determined in the
above steps.

METHODS
◀ Figure 2.  Multi-resolution, 
multi-parametric image 
registration of sarcoma 
tissues.  Displayed are the 
registered images of a sarcoma 
cross-section, including 2D 
histology stained with H&E (left), 
an ex vivo MRH diffusion-
weighted image at b-value of 
500 and 50um isotropic 
resolution (middle), and an in 
vivo bias-corrected T2-weighted 
image (right).

• The ”Image Space” environment facilitates
storage, handling, and registration of large, multi-
modality datasets without sacrificing resolution.

• The high spatial resolution of MRH images provide
structural information relative to tissue histology
that in vivo MRI is not able to reasonably resolve.

• We have demonstrated that MRH images are an
excellent conduit for registration, with
morphological detail for comparison with histology,
and signal patterns which speak to in vivo MRI.

INNOVATIONS & ADVANCEMENTS

a.

b.

c.

d.

◀ Figure 3. High-resolution landmarks-based alignment of
MRH and 2D histology. MRH images (grayscale, right) were
aligned to H&E pathology images (left). The high resolution of
ex vivo MRH facilitates identification of fine structures normally
seen in pathological images, including tumor-infiltrated muscle
(a), vasculature (b), nerve structure (c), and cartilage (d).



2.  MEASUREM ENT O F CYTO M ETRIC CHARACTERISTICS

2 mm

Automated segmentation of nuclei in H&E slides of sarcomas is met
with an abundance of challenges, including vastly differing
morphologies (Fig. 4) that render older segmentation methods (e.g.
watershed) ineffective.
Multi-step processing for automated nuclear segmentation:
• Optical density images derived from the H&E slides in QuPath were

exported to FIJI in tiles at full resolution.
• A house-built FIJI macro was used to bulk process all tiles from a

sample. Processing included a series of filters, followed by ROI
generation using the StarDist plugin for FIJI.

• Overlays of nuclear ROIs were imported back into QuPath.

Cytometric measurements were determined for each nucleus
detected across entire samples (typically > 1 million detections;
Fig. 5). In this pilot study, approximately 40 features were
measured per nucleus, with some key features of interest listed in
Table 1.

METHODS

Table 1.  Samples of measurable cytometric properties over whole-slide samples

• We have built a bulk-processing macro for implementation in FIJI which produces nuclear
segmentations at full resolution for the entire area of a pathology H&E slide. Methods for further
improving the current segmentation algorithms are currently underway.

• QuPath freeware within the “Image Space”, facilitates measurement of a variety of features for each
nucleus over an entire slide (e.g. ~40 measurements/nucleus. ~1-2 million nuclei/slide).

INNOVATIONS & ADVANCEMENTS

▲ Figure 4.  Nuclear segmentation over whole H&E slides. Binary nuclear 
segmentations are shown in a variety of nuclei/tissue conditions present in the 
sarcoma dataset. 

◀ Figure 5.  Automated 
nuclear segmentation 
of whole-slides.
Processing of tiles in 
FIJI produces overlays 
that can be imported into 
QuPath, as shown here 
on an entire histological 
slide of sarcoma tissue.



3.  GENERATIO N O F CYTO M ETRIC PRO PERTY M APS

To compare MR signal to a variety of
cytometric features, we have written
code in MATLAB to create spatially-
correct, quantitative maps of cell
properties (Fig. 6).

Generally, the operations performed by
the program are as follows:
1. Upload measurement spreadsheet

generated by QuPath.
2. Based on slide dimensions of the,

create a grid with bins of a specified
size (in this case, 50 μm2).

3. Sort each detected nucleus into the
appropriate bin based on the location
of its centroid.

4. For a given cytometric property (e.g.
nuclear circularity), calculate the
outputs for each bin, such as mean
value and variance.

5. Generate a .tif image in which the bin
values are represented as pixels, and
the scale of gray values is known.

The resulting images are spatially
matched to the original H&E image
(Fig. 7). Thus, both MRH and in vivo
MR images can be compared to the
resulting maps via previously executed
alignments (step 1 of the pipeline).

METHODS

• We have written code in MATLAB which is capable of
sorting and computing a variety of features measured
from nuclei across an entire histology slide.

• This code generates grayscale images of a known
scale which are spatially related to the histology image,
and therefore can be registered to MR images from the
same tissue sample.

• This code is being utilized in a pilot study of sarcoma
(n=10) with multiple slides taken per tumor.

• We are currently developing an online tool based on
this code for easy public access and use.

INNOVATIONS & ADVANCEMENTS

▲ Figure 6. Generating quantitative cytometric feature maps of whole-
slide pathology images. Following automated nuclear segmentation,
cytometric feature maps were created by sorting nuclear measurements into
spatial bins based on their centroid location. Mean values and variance were
calculated for each bin and represented in grayscale. The resulting images
were quantitative cell feature maps that could be compared to histology-
registered MR images.

▲ Figure 7. Examples of generated cytometric maps. Examples
of quantitative cytometric property generated from an H&E slide (top
left) of sarcoma tissues.



4.  CO RRELATIVE CO M PARISO N O F M APS W ITH MR SIG NAL

• We have automated the process of ROI generation within MR dataset, as well as the
measurement of said ROIs over the entire collection of cytometric property maps.

• We are able to begin identifying relationships between cytometric features and MR
signal in large datasets which include multiple contrasts and resolutions.

INNOVATIONS & ADVANCEMENTS

Within the “Image Space”, we can register large datasets of multi-contrast, multi-
resolution data. We have created a multitude of tools which compliment freely available
software, and have built a pipeline for registration of whole-slide histology with in vivo
MRI, using MRH as a conduit. Further, we can generate data for entire studies, without
being limited by data size or resolution. Thus, we have provided the groundwork for
understanding heterogenous tumor MR signals based on the tissue pathology.

CONCLUSIONS

We have written an ImageJ plugin that generates ROI sets in histology-aligned
sarcoma MR images. Sarcomas (n=10) were segmented (in vivo and ex vivo) to
generate ADC and T2* distribution curves. Values between ±2𝛔 of the Gaussian
mean were divided into 6 bins. The defined bins were programed into the macro
for automatic ROI detection (Figure 8).

For each image, the macro generates an ROI set and applies it to each
cytometric property map of the sample. Measurements are made for each
threshold and reported as mean cytometric property value and measured MR
signal value. In this way, cytometric properties can be compared to MR signal
over whole-tissue samples in a single efficient step (Figure 9).

METHODS

▲ Figure 8. Automated intra-tumor thresholding of T2* images. Examples ex vivo (top)
and in vivo (bottom) histology-aligned sarcoma images in which tumor is delineated in yellow
(a). In vivo and ex vivo signal was measured in all tumors (n=10) and curves were normalized
(b). Signal bins were determined based on the Gaussian fit of the tumor curves, with bin
boundaries designated in blue (c). Shown is the application of determined T2* bins on the
sample sarcoma images, with each automatically-generated ROI shown as a colored bin (d).

▲ Figure 9. Automated comparison of cytometric property maps and MR signals. A map of
nuclear circularity for the same sample is given, with the H&E image for reference (a). Tumor is
delineated with yellow. Correlations between nuclear circularity and MR T2* maps are shown, including
ex vivo T2* (b) and in vivo T2* (c).


