BIOPSY CLIPS: CHALLENGES TO QUANTITATIVE BREAST MRI

Julie C. DiCarlo^{1,2}, Hayden Lydick³, Angela M. Jarrett^{1,2}, Anum K. Syed³, John Virostko^{2,4,5}, Sarah Avery⁶, and Thomas E. Yankeelov¹⁻⁵

¹Oden Institute for Computational Engineering and Sciences at The University of Texas at Austin

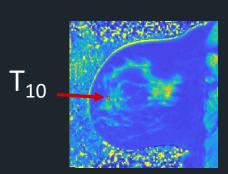
²Livestrong Cancer Institutes

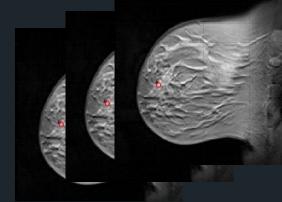
Departments of ³Biomedical Engineering, ⁴Diagnostic Medicine, and ⁵Oncology, at The University of Texas at Austin

⁶Austin Radiological Association

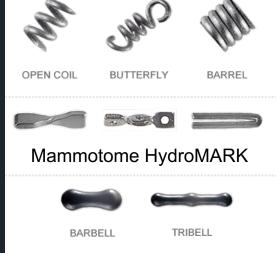
Austin, Texas, USA

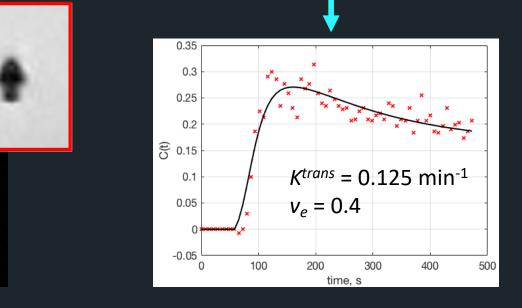
Funding support: NCI-U24CA226110, NCI-U01CA142565, U01CA174706, CPRIT RR160005



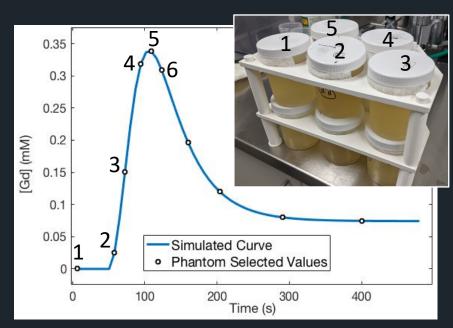

INTRODUCTION

- At biopsy, metallic clips left in lesion to mark biopsy location
- At 1.5T, image signal void artifact is 2-6 x larger than metallic clip size1
- Outside void artifact, field inhomogeneities interfere with T₁ measurement


Clips affect T₁ maps used to quantify DCE-MRI

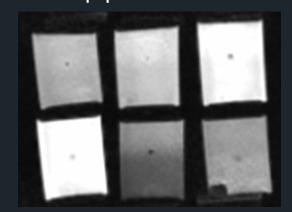






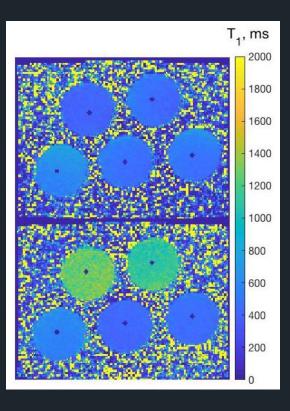

METHODS

- We created sets of 10 gelatin phantoms with varying amounts of gadolinium contrast agent
- Contrast agent concentrations were selected to mimic values traced along a simulated concentration curve with Kety-Tofts model parameters of K^{trans} 0.2 min⁻¹ and v_e fraction of 0.1:



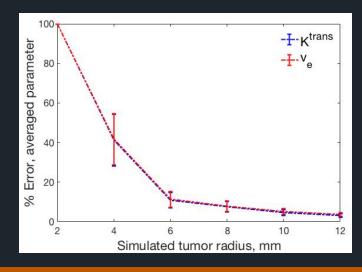
Set simulates a curve in a single phantom, as if concentration were increased in a spatially uniform manner

No clip phantom set

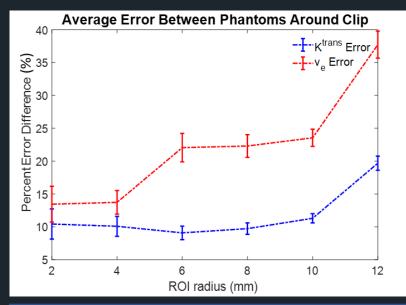

Clip phantom set

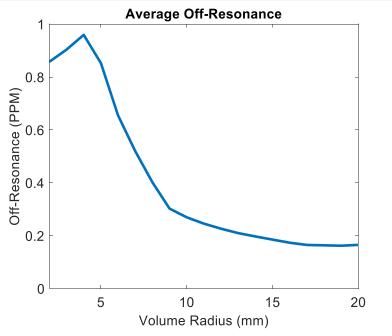
Phantoms were scanned with a Siemens 3T Skyra scanner and 4-channel flex coil for:

- Rapid B₁ mapping using TurboFLASH with pre-conditioning RF Pulses²
- T₁ maps using a multi-flip angle sequence³ with:
 - 10 flip angles (2 20 degrees)
 - resolution 1.25 x 1.25 x 4 mm³
- K^{trans} and v_e parameters were computed using the Kety-Tofts model:


$$C_t(T) = K^{\text{trans}} \bullet \int_0^T C_p(t) \cdot \exp\left(-\frac{K^{\text{trans}}}{v_e} \cdot (T - t)\right) dt$$

RESULTS


Simulating clip artifacts


- We zeroed the signal in the first 2-mm around the center of noclip phantoms, and created DCE-MRI parameter maps with the simulated-clip scans
- Circular regions of interest (ROIs) of increasing radius (4-12 mm) are segmented to simulate averaging over different-sized tumors

Imaging artifacts in clip phantoms

- We imaged similar clip and no-clip phantoms with two different echo times for measuring the off-resonance from magnitude and phase raw data
- Circular ROIs of increasing radius were again segmented to simulate averaging over differentsized tumors
- Error remained high outside the radius of signal void artifact around the clip
- Off-resonance was measured to 0.2 PPM at the max measured radius

Scanned phantoms with and without clips

No clips:

Clips in each:

Simulated uptake curves result in averaged fit parameters:

- No-clip phantom scans:
 K^{trans} of 0.19 min⁻¹ and v_e fraction of 0.14
- clip-embedded phantom scans:
 K^{trans} of 0.11 min⁻¹, v_e fraction of 0.11

CONCLUSIONS

- Biopsy marker clips create phase errors that affect quantitative DCE-MRI
- Off-resonance errors due to clips are suspected to be more problematic when imaging smaller tumors
- Artefacts are difficult to correct in patient data because signal void prevents the clip shape/orientation from being observed

REFERENCES

[1] Genson CC, et al. Effects on breast MRI of artifacts caused by metallic tissue marker clips. AJR Am J Roentgenol. 2007 Feb;188(2):372-6.

[2] Chung S, et al. Rapid B1+ mapping using a preconditioning RF pulse with TurboFLASH readout. Magn Reson Med. 2010 Aug;64(2):439-46.

[3] Sorace AG, et al. Repeatability, reproducibility, and accuracy of quantitative MRI of the breast in the community radiology setting. J Magn Reson Imaging. 2018 Mar 23:10.