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Tumor heterogeneity and cell-cell communication in 
TME play a critical role in drug resistance and 

metastasis.
Critical knowledge gap in 
how different cell types in a 
TME simultaneously 
collaborate to drive 
invasion/metastasis and 
therapeutic resistance 
phenotypes.
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Primary Tumor
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Quantifying spatial intratumor heterogeneity is critical for accurate 
diagnosis and prognosis

Primary tumors represent evolving eco-systems comprised of distinct 
microenvironments of spatially interacting cancer and non-cancer cells, including 
immune cells, as well as secreted molecules.

Dominance of clone 1
(low immune infiltration)

Mixed dominance of clones 2 & 3
(high immune infiltration and activation)3



Primary	Tumor
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Current	genomic	analyses	alone	do	not	directly	capture	the	critical	spatial	
interactions	in	 tumors	responsible	for	metastasis.	

Today’s	Clinical	Practice	Fails	to	Predict	Tumor	Progression



Primary	Tumor
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Today’s	Clinical	Practice	Fails	to	Predict	Tumor	Progression
In	addition,	the	current	practice	of	pathology	yields	insufficient	molecular	details	of	
spatial	interactions	within	tumor	microenvironments.



Computational	Spatial	Tumor	Pathology
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The	measurement	of	multiple	biomarkers	in	tissue	sections	coupled	with	machine	
learning	tools	 characterizes	the	spatial	interactions	and	infers	signaling	

networks	 responsible	for	tumor	progression.
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Microenvironment	Quantification
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Computational	Spatial	Tumor	Pathology
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Microenvironment	Quantification
Signaling	Networks

The	measurement	of	multiple	biomarkers	in	tissue	sections	coupled	with	machine	
learning	tools	 characterizes	the	spatial	interactions	and	infers	signaling	

networks	 responsible	for	tumor	progression.
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Characterizing	the	critical	spatial	interactions	of	tumor	microenvironments	leads	to	
improved	diagnoses,	prognoses,	and	therapeutic	strategies.	

Diagnosis,	Prognosis	&	
Therapeutic	Strategy

Computational	Spatial	Tumor	Pathology

1cm	

Microenvironment	Quantification
Signaling	Networks
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Spatial	Analysis



Computational Spatial Tumor Pathology

EpigenomicsGenomics Proteomics Metabolomics

1			mm	

Multi to hyperplexed fluorescence imaging of whole 
section for higher spatial resolution and tissue context

H&E stained whole tissue section
from FFPE tumor sample
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Multiplexed IF 
• 9 biomarkers (up to 60Ab)
• Multiple FISH
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Heterogeneity Metrics

• Shannon Index
• Quadratic Entropy
• Pointwise Mutual 

Information
• Other indices
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Data
• FFPE tissue 99 spot TMA
• 20x mag
• 4 Cancer types

– ER(+) IDC (3 patients)
– ER(+) ILC (5 patients)
– ER(-) IDC (8 patients)
– HER2(+) IDC (8 patients)

• 3 replicate cores/patient
• Fluorescent markers 

– Diagnostic markers
• ER, HER2, PR

– Structural markers
• DAPI, Na+K+ATPase, S6, 

panCK
• 27 spots BC cell lines



Data



Maps Spatial Intratumor Heterogeneity

• Global heterogeneity
• Local homogeneity • Local heterogeneity • Mixed population



PMI maps as potential diagnostic biomarkers
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Spagnolo, DM, et al. Journal 
of Pathology Informatics, 
2016; 7:47



THRIVE: Tumor Heterogeneity Research Interactive 
Visualization Environment 

• Open software framework
• Compatible with standard microscopes
• Easy to contribute algorithms 
• Easy to contribute datasets
• Actively used by research community
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Software Architecture
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Architectural drivers:
• Extensibility:  Minimal effort to add more algorithms.
• Maintainability:  Minimize application code, 

maximize leverage of open source libraries.
• Flexibility:  Deploy locally or in cloud.
• Scalability:  Execute for single image regions or cohort.
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Video Demonstration
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(Click to run video.)



Timeline
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• Summer 2017 – Version 0.1 available for demonstration, 
both as source code and cloud-hosted demonstration.  Initial 
evaluators identified.  Feedback solicited.

• Fall 2017 – Version 0.2 includes ability to upload and import 
lab-generated image sets.  Additional feedback solicited.

• 2018 – Several iterative releases ramping up user base and 
having prioritized improvements identified by pilot users.

• April 2019 – Version 1.0 available.
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PMI maps as potential diagnostic biomarkers
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• PMI maps constructed for individual cores using 
the background distributions of cell phenotypes 
in the entire dataset, and pooled together for 
patient-level PMI (entire tumor) to better assess 
intratumor heterogeneity.

• Heterogeneity score assigned to each 
core/patient based on the entries in each PMI 
map

Spagnolo, DM, et al. Journal of Pathology Informatics, 2016; 7:47



PMI Maps Exhibit Patterns that are 
Characteristic of Individual Patient Tumors
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Heterogeneity score: 
AL13-3 ER(+) IDC & AL13-6 
ER(+) ILC show more 
heterogeneity (difference 
from background) than 
AL13-14 ER(–) IDC & AL13-
21 HER2(+) IDC. 



PMI Maps Exhibit Patterns that are 
Characteristic of Individual Patient Tumors
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• core-level PMI maps for 
AL13-14 ER(–) IDC very 
similar => each core is a 
reasonable approximation for 
the patient-level analysis

• AL13-21 Her2(+) IDC has 
highly differing core-level PMI 
maps => high degree of 
intratumor heterogeneity in 
this patient. 



PMI Maps Exhibit Patterns that are 
Characteristic of Individual Patient Tumors
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• heterogeneity	score	(1-d)	:	
simple	low-level	understanding	
of	heterogeneity	between	or	
within	patient	samples

• PMI	maps	(2-d)	provide	a	
higher-level	understanding,	
providing	insights	into	the	
spatial	relationships	of	different	
cell	types	which	brings	about	the	
heterogeneity


