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We want to understand how a patient’s tumor evolves...
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... and across metastasis, while colonizing distant
organs and establishing multiple metastatic sites.




Cancer is a genetic disease



|

v |

‘ Samples ‘ Primary [ 1st Rdapse I After Lipo-Dax I After Carbopla ] At Decease ‘ + ‘
. | 2= ]
1. Detect all somatic Basic Gerormic Cirica
o ) Field Value
I I I u ta t I O n S a n d P rlmary [ Aftach Scmatic SNV | Cancer Type Ovanan
10892X1 SanpleType Primary
H . . 20110215 [ AttachcwvEwerts | Trestment
Inherited variants g
Inspect ¥
“ariants
Vaniart Type Affected Gene Known Oncogene Impact Effect Sample Distribution  View in GENE.IOBIO
SNP P53 YES HIGH Misserse [ [ ]| lirk
SNP BRCA2 YES HIGH Stop-gan [ ] ] lirk
Insertion FTL3-TD YES HIGH Bl | | | lirk
SNP DNMT34 YES LOow Irtronic | HHEE lirk
Deldion ORC1 NO LOw [[:-] lirk

Allele Frequency and Clustering

Mt

INnt

Inspecty

after carboplatin

survived as is > @



The main steps of subclone analysis: a primer
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1. Detect somatic

mutations
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1. Detect somatic 2. Determine allele 3. Convert to cellular

mutations frequency (AF) prevalence (CP)
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Example: AF=10%

Normal copy number (CN=2) Amplification (CN > 2)
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Deletion (CN < 2)

10% 40% 20% 13.3% 10%
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3. Mutation clustering
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Our SubcloneSeeker method

identifies all

subclone evolutionary

“trajectories” consistent with the bulk mutation AF data

Qiao et al., SubcloneSeeker,
Genome Biology, 2014

A [ VA NVA /A NVAE A NAN\ AN N0
* \ 2 |

A 2\ }\'*—J Tumor Tissue

Data Preparation

Exhaustive ./ 30%
Enumeration

) (=) (=)

DN
Ultra Deep &ancing Micriarray Wholt:;rlome / Exome Sequencing
Somatic Events (Clusters)
35%

o

70%

30% 10% Observed Allele Frequency (AF)
4 X
60% 20%  Calculated Cell Prevalence (CP)
D -10%
/AN - ok 3
)-10%
- 50% . ) 60%
e e :
60% () (™) 20% P
NS \= 20% (4
b 4 X
D) -10% D 10%
<3 o O )
50% o 40% 10% (* + ) 20%
v v
& ) .
) 20% 60% (-,
X v

x <



Multiple subclone structures may account for bulk data
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Frequency

Frequency

Number of “consistent” subclone structures is small
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Further reduction of the “solution space” is possible with multiple
biopsies from the same patient
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Back to our primary chemonaive / resistant relapse ovarian example:
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Extending our tools to enable the analysis of longitudinal tumor evolution

The progression of a refractory breast cancer patient across
three courses of treatment over 2.5 years, whose tumor was
sequenced at 5 distinct time points, until just before death.



Mutation calling and clustering in longitudinal tumor sequencing data

» Mutations are clustered according to their allele frequencies (cellular
prevalence) at all sequenced time points

 All variants had to be jointly called across the normal control sample
and the five tumor biopsies



Subclone evolution reconstructed by running SubcloneSeeker over
consecutive pairs of time points



Multiple “solutions” exist



“Consensus”



Confirming computational subclone structure prediction with
single-cell genotyping
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Single-cell sequencing data from pre-Doxo and
post-Doxo cells, by genotyping groups of

mutations that define the variant clusters, and the
subclones



Mutations that
define the subclones
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Colored squares = mutation identified in single-cell sequencing

White squares = unknown mutation status (unsuccessful PCR or WT-only PCR)




Interpreting subclone evolution in the context of disease progression

RBMXL3




Variant interpretation
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Current focus is on developing a general algorithmic solution for
reconstructing subclone structure in a longitudinal setting (SuperSeeker)
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Our “driver” dataset is from a “rapid autopsy” metastatic breast cancer patient

« Triple-negative disease Bone (n=3)

* Primary biopsy at diagnosis

Lung (n=11) ——L " &°

« Mastectomy at recurrence E node (n=2)
e 26 metastasgs from various organs [iver (n=4) — I e \ Primary breast (n=1)
removed during rapid autopsy, hours /
: _ Post-chemo mastectomy
after death Kidney (n=1) 5
breast (n=1)
« 2 normal control samples (skin) Pancreas (n=1)

« 30 biopsies across 8 organs

« 60X WGS + WES lllumina sequencing data
collected at Wash U for all biopsies + 2
normal controls from skin + 2 primary tumors

* |nherited variants in BRCA2, not in BRCA1

« All tumor sites share somatic homozygous
TP53 missense SNV and RB loss

Peritracheal lymph



Please visit our posters to see the current state of this analysis

UCTION: In most cancers, metastasis is the major
case of treatment fallure and patient death.
Understanding metastatic tumor evolution at a subcional
level Is likely o offer vital Insight Into mechanism. The
identification of aggressive subclones responsible for
metastatic colonization into distal organs offers the
possibility to preferentially target these subclones, rather
than more benign groups of cells within the tumor.

* *

METHOD: Here we present the SeederSeeker
computational toolkit, built on top of our published
SubcloneSeeker! algorithm, that examines many types of
somatic variants including CNVs, LOMs, and SNVs to
reconstruct the  phylogenetic  relationships  among
metastatic tumor samples. The entire workllow is broken
into three steps: 1) Using large scale chromosomal events
such as CNVs and LOHs to partition samples Into groups of
metastatic waves. 2) Using WGS SNVs on CNV and LOH
neutral regions to reconstruct sample level phylogeny. And
3) Using SNV variant allele frequencies to reconstruct
=

*

RESULT: We applied the method to a triple negative breast
cancer rapid-autopsy dataset consists of 26 metastatic sites
as well as primary diagnostic tumor. The result suggests
that the primary breast cancer sample initially invaded
lung, and then spread in four metastatic waves, each
invading a different groups of organs (wave 1 invaded
abdominal organs such as liver and pancreas, wave 2 and 3
invaded lymph nodes, and wave 4 invaded bones and brain
tissues). In each wave lung was always an early invasion
target, suggesting that lung could play an important role for
breast cancer evolution and adaption in our case.

* *

CONCLUSION:
. we

P y develope:

method, which we extended to perform multi-site

metastatic phylogeny reconstruction.

We applied the method to an index patient, and

discovered how metastatic waves occurred  with

assoclated evolution trajectories

* The method can be used to identify seeding patterns
across metastatic sites, potentially revealing cancer
origin, metastatic mechanisms and guide treatment.

* -
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mputational toolkit for reconstructing metastatic expansion at subclone level
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Filter by masks
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Filter by variant quality
Filter by per sample depth

Filter by bi-allelic

High quality SNVs

Filter by exonic region
SnpEff
Annotate population background AF

Annotated Calls

Inherited SNVs

Somatic SNVs

WGS Pipeline

Sample grouping by CNV and LOH states. Through an expert driven process, WGS sequencing
e NV and i FACETS?),

chromosomal events, such as chri7:3(0), to establish coarse-grain sample relationships. This
(data not shown] .

Sample phylogeny reconstruction. Although CNV and LOH events can guide sample clustering,
the resolution they provide is limited. We can, however, utilize the state of shared vs unique
somatic SNV events to resolve sample phylogeny In much finer detail. This can only be done In
CNV and LOK neutral regions of the genome with high certainty.

Subclonal phylogeny reconstruction. Sample level phylogeny gives a finer picture on how each
sample s related to each other, but provides no insight into intra-sample cional evolution. Using
variant allele frequencies (a5 detalled in SubcloneSeeker paper 1), one can further resoive how
samples are related on a subclonal level, providing even more insight into tumor evolution (e.g
sample 8 “party place” tfer .
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INTRODUCTION: Metastatic breast cancer is an advanced-stage
disease in which the cancer cells have spread to distant organs,
€. bones, liver, brain and lung. This type of breast cancer
accounts for approximately 6%-10% of all breast cancer
diagnoses, with a dramatically lower S-year survival rate of
22%. The goal of this study is to dissect metastatic tumor
expansion at a subclonal level, in order to identify its genomic
drivers, as well as the aggressive colonizing subclones seeding
new metastatic sites.

* *

METHOD: As our driving dataset, we have collected two primary
tumor biopsies, one ! diagnosis and one at mastectomy
necessitated by the patient’s relapse; 26 metastatic tumors
across seven organs via a rapid autopsy procedure hours after
the patient’s decease; as well as two skin biopsies to be utilized
as normal control tissues. All samples were subjected to
exome-enriched whole genome sequencing with an average

f 60X, and higher in jons. FACETS!
and FreeBayes were used to call copy number variants and SNP
varlants respectively. We developed SeederSeeker toolkit? to
reconstruct the phylogenetic relationships among metastatic
samples and tumor evolution at subclone level.

* *

in

RESULT:
5' UTR of BRCA2. Somatically acquired homozygous TPS3
missense variants and RB1 loss were present in all tumor
samples, explaining the widespread chromosomal aberrations,
including both copy number variations (CNVs), and large
regions with loss of heterozygosity (LOH). The data suggests the
primary breast cancer cell first invaded lung tissue and then

0 lung, the tumor invades abdominal organs (liver, pancreas),
Iymph nodes, and finally, moves to the brain and bones.

reveals that 2
the cell which seeded samples in group1 has already migrated.
Further more, many inferred ancestor tumor cells were
observed in lung metastatic sample B, which may suggest that
8 was an early metastatic lesion and and also an incubator that
attracted tumor cells to stay, further evolve and then colonize
other sites.

*

CCONCLUSION: Trained on a large (perhaps currently the largest)
metastatic biopsy dataset from a single patient, our method
provides a novel framework to simultaneously analyze CNV,
LOH, and SNV data to reconstruct metastatic tumor expansion
at subclonal resolution.

+* *
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Triple-negative breast patient treatment history

Week0 Week 21 Week 39 Week 56
doxorubicin
cyclophosphamide
- 11
capecitabine -
|
primary mastectomy  recurrence  Rapid autopsy
tumor
Sample summary
3 8one (n3)

Peritracheal lymph node (n=2)

Uve

Kidney (n=1) \

X(63)
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Severe abnormality of chromosomes were observed in all tumor samples in this
patients. Despite chromosomal amplifications and deletions, loss of heterozygosity
was occurred in most of the chromasomes. Over all, 23 rapid autopsy samples fell
into four groups with distinct CNV profile (A). The primary sample and mastectomy
sample as well as lung metastatic samples B, S, and O didn't fall into these four
groups, but instead have their own characters (B).

IUSTAR Center for Genetic Discovery; & Toxicology,

bclonal metastatic expansion in triple negative breast cancer
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Somatic SNV similarity also showed the same
grouping  (C, red means more shared
variants). By comparing the shared and
unique variants among all the samples,
SeederSeeker can construct the phylogenetic
tree, with each block represents a sample or

subclone structure of each sample and the
evolution process at the subclonal level. Each
block represents a sample, each circle
represents a cell population and Cx
represents a cluster of variants that share the
same allele frequency in all samples (€).




Ongoing

* Novel, reference-free methods for somatic mutation

Identification

Andrew Farrell

: K-MER BASED

USTAR Center for
Genetic Discovery

REFERENCE-FREE VARIANT DETECTION

Abstract

because the analysis involves only a tiny fracson of tho
harboring genilic variants, e mapxity of the data represening sequence shared
1 tha gencmes is dsregarded. Unbiased, because analysis does nol require mapping
cariad out
bidng the many maping biases that prevent the delecton of genetc varasons in hghly
erged gemsm e 1egons

US is ideally suited 1o experiments whers muliple, ciosely related, genomes can be
novo discavery in human irios and quariets, and the desection of

oction in famiy lios showcasws the extrenely high spacificly of variant delacton wit
US. Provious rosearch has sugoested that the rato of do novo ovents in human
buistions at ~25 x 108, or roughly 75 mutations per generaton.
merous dsease family ko data sats at the University of Utah, we see between 77 and
‘Wid do novo Mutaton events por chd, and on avorage, §3% of the cals agroe W
ippag based cal, laaving between 2 and 6 novel cals per family in RUFUS which are
o falss posiives or novel variants hat only RUFUS can detoct, confimatons pending.
vorscly, mapping based methods on average havo 150,000 Unique gonOMG wide d6 ovo.
is_per chid. dominaled by mapping and refersnce errors, which Grown out any ire
jon, uper

plicasion 10 the dataction of somafic mutation in fumor tssue samples has s the
3ciity 506N in our 06 novo work and furter showcases RUFUS' unique, unbiased. abilty
et mutations of all types and sizes. Of particulary intesst are inserion deietion evenls
oetiveon 50bp and 5006p. lyng in the “blind” spot g
GATK, FrocBayos) and siructuralCNV' detectors (LUMPY. WHAM, ot In this data sot
RUFUS calls 58 uniqus call. of these 95 sppear 1o be trus varianis missed by mapping
. 84 are 20and
20060 that no other method is able to detecs, This makes RUFUS an iceal method for fiing
the curent hola of mediumdangth de nova INDEL detecton, both in family and tumor
sequencing datasets.

60X Human Trios

Do Novo Variant Siza and Count In Each Sampie

15-0019853
Pl
150019832
5o
®15-0019841
Bt
oo
£2 o
3 g g 50019847

Andrew Farrell, PhD', Gabor Marth, PhD?

1Dsparment of Human Gonocs, USTAR Conlas for Genetic lscovery, Universty of Utsh,

;] - [ =
R + B ——B 2

%u.f ES{ \fﬁf}ﬁ ¥ ]

7 Une e o o e samle et pio st conige
Faih ks

L —
+ Assemtied cortgs e then comgared
o the reference 9 ey mutators

Tvension Large INDEL ™)
E > Sl INDEL

30X Human Trios

D@ Nova Variant Siza and Count in Each Sample

Count

$2353412 3
H R B
i

EMfctof Fathers Age on Numiber of De Nove Variants

RUFUS reads

RUFUS Assembled
Conbig

150018850

(vriants Bhered with graghie, i paee cow 10X)

30X cata doss. o peowice asecquste ooverage for corfcent de
oo calng for any mehod At 0K c:

Number of 0= Novo cas

1130 pas VB in b N0 callng, " Fathersage atvinh

Benefits of a reference free method

+ Open to any organism, including ones with no reference
sequence

+ No reference bias: SNPs and INDELs have an equal
d, i INDEL i

chance of being 3

+ Reduced false positive rate due to lack of mapping based
errors

+ Can identify variations in highly repetitive sequence:
telomeres, gene family, centromeres

« All mutation types identified in a single method

+ No need for computationally expensive whole genome
assembly

Tumor Profiling

‘Somaic Variant Size and Countin Primary Tumor va. Normal Tissue

w0
5 200
: 2 8 ! e 2 2 83 3 & 8 2 2
P rrrrrarriiieaigis
SRS R R RIS EEEEEEE
o
i o —
§ 0% *LaroRio)
§O s .,
52 e
2
i I -
* Rl © o § S @ freetayes (1789)
A A N T A
5 S PN »
o 8 g

2.4 kb tandom dupication unique 1o RUFUS

http://marthlal ub.com/JAndrewRFarrell/RUFUS



Ongoing

 Cancer mutation annotation
« Set-aside project to integrate with CiViC (Obi and Malachi Griffith)

e Current collaborations

« Refractory, triple-negative, and metastatic breast and ovarian
cancers (Andrea Bild, David Bowtell, Lynn Henry)

« Hematological malignancies (Michael Deininger, Debbie Stephens,
John Byrd)

 Patient-derived tumor models (Bryan + Alana Welm, K.T. Varley,
Jay Gertz)

» Subclone analysis using single-cell sequencing data
» Looking for SC collaborations!
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(web tools)
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Postdoc positions in computational cancer analysis tool development available.
Email: gmarth@genetics.utah.edu




