

WebMeV – A Cloud Based Platform for Genomic Analysis

Yaoyu E. Wang

Associate Director, Center for Cancer Computational Biology Dana-Farber Cancer Institute

Acknowledgements

Dana-Farber Cancer institute CCCB John Quackenbush

Software Engineer Lev Kuznetsov Antony Partensky

<u>Bioinformatics</u> Brian Lawney Derrick DeConti

Funding

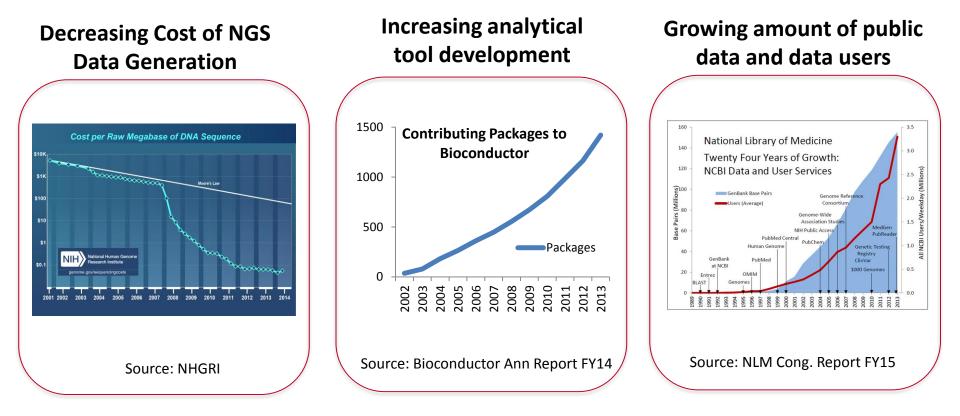
National Cancer Institute

Standalone Application for Genomic Analysis

MeV – Multi experiment Viewer

File Adjust Data Metrics Analysis	Display Utilities		
Clustering T	Classification	ction	ualization
Mek Criginal Data Cluster Manager Gene Clusters Analysis Results Script Manager History	data file	 CCCCB/Projects/MeV/Mev_4_8_1/./data/rnaseq/iso CCCCB/Projects/MeV/Mev_4_8_1/./data/rnaseq/iso Single-color Array Developed to microarray ar 204,478 down Sourceforge s 	oforms.fpi of incorporate nalysis methods nloads on

http://sourceforge.net/projects/mev-tm4/


Standalone Applications Lack Portability and Scalability

- Require maintenance and testing on multiple operating systems
- Application relies heavily on user computing environment
- Developers have limited control over application dependency
- Computing power does not scale with the size of data set
- Require to download datasets onto local machine for analysis

Genomic data and analytical method explosion

Democratizing data and analytical methods on a common infrastructure is essential

MeV and Genomic Data Consumers

Bioinformaticists/Data Scientists

- Start with raw data (i.e. fastq)
- Process raw data by privately tuned pipelines
- Perform secondary data analysis on self processed data
- Construct secondary analysis pipeline from software packages
- Let data drive scientific hypothesis generation

Translational Scientists

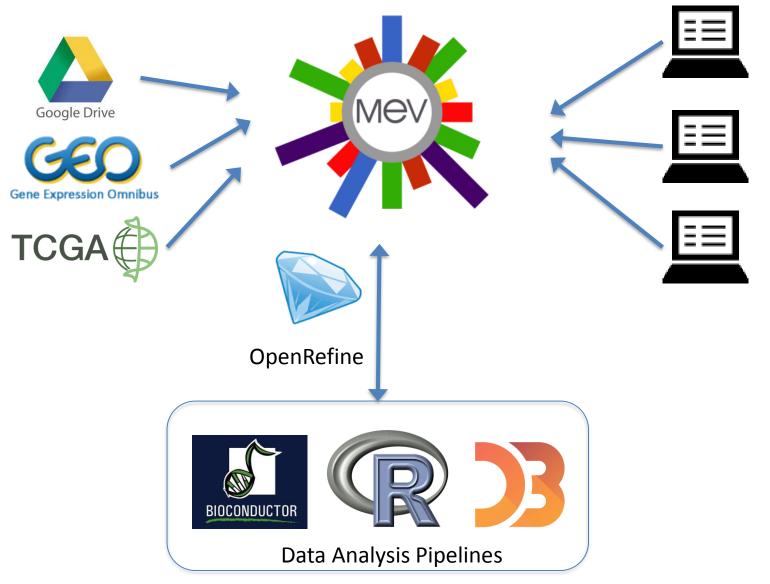
- Start with a specific hypothesis derived from observation
- Select samples/patients of interest for the hypothesis
- Find processed to perform secondary analysis
- Use readily available tools
- Interpret results in the context of initial hypothesis

Aims and Design Principles of MeV

Program Aims:

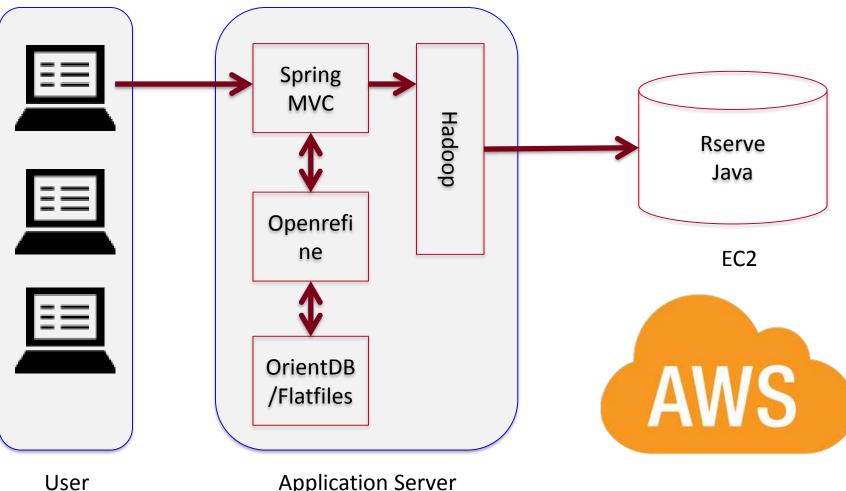
• As an interface to the wide array of tools available in Bioconductor and through other open-source projects

ΔΤΙΟΝΔΙ


- Natively integrate large genomic databases
- Support analysis of data emerging from Next Generation sequencing technologies, particularly RNASeq
- Adapt solely on open-source software technology

Design Principles:

- Modularized analysis and visualization design for rapid method adaptation
- Interactive result presentation to enhance user exploration
- Provide tools for cohorts stratification, grouping, and selection
- Address questions such as:
 - How my favorite genes vary in the dataset from this paper?
 - How are the phenotypes associated with the differentially expressed pathways


MeV General Workflow

WebMeV Architecture

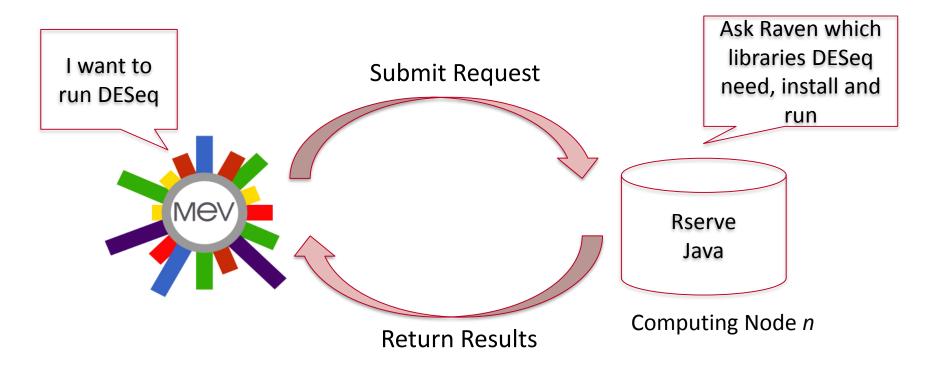
Application Server

Implement Rserve client on AWS Compute Node

Pro: Allow for quick development cycle to integrate R/Bioconductor packages

Cons: Difficult to control R versions and dependency for packages. Nightmare for distributed computing and reproducible research

Dependency Injection



Raven: versioned snapshot repository for R, updated daily

- Available: https://github.com/dfci-cccb/raven

InjectoR: Dependency injection framework for R.

- Primer at <u>http://dfci-cccb.github.io/injectoR/</u>

Current Analytical Methods

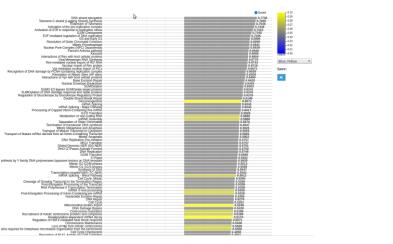
Analytical Method	R/Bioconductor Packages		
Normalization	VST – Variance-stabilizing transformation normalization		
	Upperquantile – upperquantile method for RNA-seq read count		
	normalization		
	TSS – Total Sum Scaling method for RNA-seq read count normalization		
	TMM – Trimmed mean of M-values normalization method for RNA-seq		
	read count normalization		
	DESeq – Geomatric mean based method for RNA-seq read count		
	normalization as implemented in DESeq		
	limma/voom – differential expression analyses for RNA-sequencing and		
	microarray studies using linear model		
Feature Selection	edgeR – differential expression analysis for RNA-seq data with		
	normalization		
	DESeq – differential expression analysis for RNA-seq data with		
	normalization		
Gene Set Approaches	topGO – testing GO terms enrichment while accounting for the topology		
	of the GO graph		
	ReactomePA – gene set and pathway enrichment analysis of data by		
	integrating differential expression		
Meta analysis	Survival – core survival analysis that performs Kaplan Meir and Cox		
	models		

Development cycle for adapting a new R method

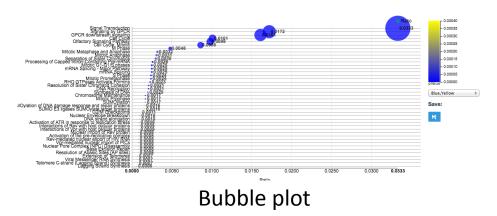
• Work flow design

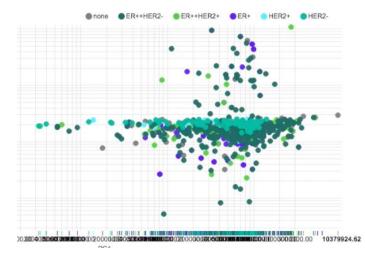
- i.e. define input and output format

• R method incorporation

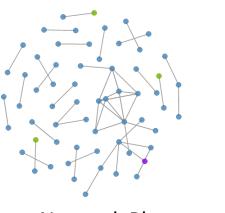

- Takes only *days*, the least time consuming step

- Result Visualization
 - Mostly done using D3 to be interactive
 - Takes a <u>few days</u> if templates are easy to implement or already exist


Example Visualization Outputs



Angiogenesis



Vertical Barplot

Interactive Scatter plot

Network Plot

OpenRefine for cohort selection

FARBER CANCER INSTITUTE æ > datasets × Import TCGA Datasets You Import Selected Samples » BRCA clinical annotations tsv 884 rows Extensions: Undo / Redo 3 Facet / Filter Show as: rows records Show: 5 10 25 50 rows « first < previous 1 - 10 next > last » Refresh Reset All Remove All atic_breast_c 🔻 histological_type 🔻 her2 immunohistoc 🔻 metastatic_breast_c 🔻 metastatic_breast_c 🔻 days_to_death pathologic_T her2_and_cent days_to_death change reset Infiltrating Lobular 2+ [Not Available] null [Not Applicable] T2 [Not Available] ble Carcinoma Infiltrating Ductal 0 [Not Available] null [Not Applicable] T2 [Not Available] 100.00 - 4.500.00Carcinoma Numeric Non-numeric Blank Error Infiltrating Ductal 1141 T2b [Not Available] ble] 3+ [Not Available] null Carcinoma histological_type change View Details null Infiltrating Ductal [Not Available] ble] 1 +7 choices Sort by: name count Carcinoma View cohort details [Not Available] 1 Infiltrating Ductal Carcinoma 717 ole] Medullary Carcinoma [Not Available] [Not Available] null Infiltrating Lobular Carcinoma 82 View aggregate statistics Medullary Carcinoma 5 Mixed Histology (please specify) 34 View value distribution null – Infiltrating Ductal [Not Available] [Not Available] Mucinous Carcinoma 6 Carcinoma Other specify 39 Actions: Facet by choice counts Infiltrating Ductal [Not Available] [Not Available] Filter data to analyze for ble] null _ Carcinoma selected cohort Infiltrating Ductal ble] 0 [Not Available] null Carcinoma Search by self define facets ble] Infiltrating Ductal [Not Available] [Not Available] null **Build composite phenotypes** _ **Build cohort sets** _

CENTER FOR

COMPUTATIONAL

CANCER

BIOLOGY

Next Steps

- Integrate with Cancer Genomics Cloud pilot to streamline TCGA data access
- Refine clinical attribute selection interface
- Integration with VisANT and Cytoscape for network visualization and analysis methods
- Extend data access to other large public domain datasets
- Experiment with Docker container to package analysis

WebMeV Demo

https://youtu.be/iGQbT1zCOUg