
Translational Cancer Mechanisms and Therapy

Dynamic Contrast-enhanced MRI Detects
Responses to Stroma-directed Therapy in Mouse
Models of Pancreatic Ductal Adenocarcinoma
Jianbo Cao1,2, Stephen Pickup1, Cynthia Clendenin3,4, Barbara Blouw5, Hoon Choi1,
David Kang5, Mark Rosen1,4, Peter J. O'Dwyer3,4, and Rong Zhou1,4

Abstract

Purpose: The dense stroma underlies the drug
resistance of pancreatic ductal adenocarcinoma (PDA) and
has motivated the development of stroma-directed drugs.
Our objective is to test the concept that dynamic contrast–
enhanced (DCE) MRI using FDA-approved contrast
media, an imaging method sensitive to the tumor micro-
environment, can detect early responses to stroma-directed
drug.

Experimental Design: Imaging studies were performed
in three mouse models exhibiting high desmoplastic reac-
tions: the autochthonous PDA in genetically engineered
mice (KPC), an orthotopic model in syngeneic mice, and a
xenograft model of human PDA in athymic mice. An
investigational drug, PEGPH20 (pegvorhyaluronidase
alfa), which degrades hyaluronan (HA) in the stroma of
PDA, was injected alone or in combination with
gemcitabine.

Results: At 24 hours after a single injection of PEGPH20,
Ktrans, a DCE-MRI–derived marker that measures how fast a
unit volume of contrastmedia is transferred from capillaries to
interstitial space, increased 56% and 50% from baseline in the
orthotopic and xenograft tumors, respectively, compared with
a 4% and 6% decrease in vehicle groups (both P < 0.05).
Similarly, after three combined treatments, Ktrans in KPC mice
increased 54%, whereas it decreased 4% in controls treated
with gemcitabine alone (P < 0.05). Consistently, after a single
injection of PEGPH20, tumorHA content assessed by IHCwas
reduced substantially in all three models while drug delivery
(measured by paclitaxel accumulation in tumor) was
increased by 2.6-fold.

Conclusions: These data demonstrated a DCE-MRImarker,
Ktrans, can detect early responses to stroma-directed drug and
reveal the sustained effect of combination treatment
(PEGPH20þ gemcitabine).

Introduction
Pancreatic ductal adenocarcinoma (PDA) is a highly lethal

cancer with a 5-year survival rate of 6% (1). PDA is characterized
by a dense, desmoplastic stroma, populated by proliferating
pancreatic stellate cells (PSC), which deposit an extracellular
matrix (ECM) including collagen, proteoglycans, and glycosami-
noglycans [e.g., hyaluronan or hyaluronic acid (HA)]. Accumu-
lation of HA, which is highly water-absorbing, results in a signif-
icant increase in interstitial fluid pressure (IFP) in the tumor. This
hydrostatic pressure leads to the collapse of blood and lymph
vessels, and ultimately hypoperfusion of the tumor (2). The high
IFP in combination with a reduced blood vessel density defines a
unique tumor microenvironment featuring a profound lack of

functional perfusion (3). Contrast-enhanced radiologic imaging
often presents a hypoenhanced PDA tumor (4, 5) in contrast to
hyperenhanced neuroendocrine pancreatic tumors, which are
hypervascular. It has been recognized that this unique tumor
microenvironment, where both blood flow and permeability of
the microvasculature are reduced, with the consequence that the
transport of small-molecule drugs across the capillaries is hin-
dered, underlies the chemoresistance in PDA (3, 6, 7). Besides
high IFP, the stroma also harbors an immune-suppressive micro-
environment (8). Taken together, the stroma plays an important
role in the overall resistance of PDA to treatment; therefore,
overcoming this "stromal resistance" has motivated the develop-
ment of stroma-directed interventions. One barrier to the devel-
opment and clinical implementation of these drugs is the lack of a
robust noninvasive marker that can be used to evaluate the
pharmacodynamic effect of the drug, identify responsive patients,
and guide combination strategies.

Dynamic contrast–enhanced (DCE)-MRI is sensitive to the
tumor microenvironment, especially to changes in microvascular
function, that is, permeability and perfusion; hence, it may
provide a clinically translatable, quantitative imaging marker to
assess responses to stroma-directed therapies. Although its utility
to assess antiangiogenic therapies has been examined extensively
in the clinic (9), DCE-MRI for stroma-directed therapy was only
applied in a couple of pilot studies (10, 11). Therefore, to allow a
thorough evaluation of this new application of DCE-MRI, exten-
sive animalmodelwork is necessary, anddetailed analyses should
provide mechanistic insight of the imaging marker. We
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hypothesized that a DCE-MRI–derived quantitative marker of
microvascular function, Ktrans, can detect the early response of
the PDA to stroma-specific treatment. In the experimental design,
we employed three PDA models including the autochthonous
PDA in genetically engineered mice, an orthotopic model in
syngeneicmice, and a xenograft model of human PDA in athymic
mice. We used an investigational drug, PEGylated recombinant
hyaluronidase PH20 (PEGPH20, generic name as pegvorhyalur-
onidase alfa), which degrades stromal HA and has shown evi-
dence of efficacy in a randomized, multicenter phase II clinical
trial of patients with PDA (HALO-202; ref. 12). We examined the
effects of a single PEGPH20 injection and in combination with
gemcitabine, an active drug for PDA. We corroborated the imag-
ing results with assessments of tumor HA level and quantitative
measurement of drug delivery to the tumor. Our data demon-
strated that a quantitative DCE-MRI marker can sensitively detect
early responses of PDA to stroma-directed drug and monitor the
sustained effect of combination treatment.

Materials and Methods
Materials

PEGPH20, a polyethylene glycol (PEG)–conjugated recombi-
nant human hyaluronidase enzyme that degrades HA (8), was
provided by Halozyme Therapeutics via an institutional material
transfer agreement. It was dissolved 3.5mg/mL in a vehicle (VEH)
made of 10 mmol/L histidine and 130 mmol/L sodium chloride
(pH 6.5), and an aliquot was diluted in PBS before injection.
Human PDA cell line, BxPC-3, was purchased from ATCC, was
authenticated using the short tandem repeat DNA profiling, and
was tested to be free of Mycoplasma by agar culture and Hoechst
DNA staining, and was used within 50 passages. An FDA-
approved contrast agent for clinical MRI, MultiHance (Bracco
Imaging), was diluted (50�) in saline to 10 mmol/L gadolinium
(Gd) for injection in mice.

PDA mouse models
All animal procedures were approved by the institutional

animal care and use committee (IACUC) of the University of
Pennsylvania (Philadelphia, PA). A genetically engineeredmouse
model harboring a pancreas-specific Cre allele with p53 and Kras
mutations referred to as the KPC mouse (13), was maintained at
the Mouse Hospital of Pancreatic Cancer Research Center of our
institution. KPC mice of both sexes were used in this study. A cell
line, 4662-KPC, established from a KPC tumor (14), was used to
generate the orthotopicmodel by injection of 1.25�105 cells into
the pancreas of syngeneic C57BL/6mice [9 weeks old, both sexes,
Jackson Laboratory (Bar Harbor, Maine)]. A xenograft model was

generated in athymic mice [NCR nu/nu, 9 weeks old, both sexes,
Charles River Laboratories (Wilmington, MA)] by subcutaneous
(subQ) injection of 10-million BxPC-3 cells suspended in 0.1 mL
PBS in the hind flank.

DCE-MRI protocol and pharmacokinetic modeling
MRI studies were performed using a 9.4T DirectDrive System

(Agilent Technologies) interfaced with a 12-cm gradient coil
(maximal strength 40 gauss/cm). While under isoflurane anes-
thesia, the mouse was placed inside a 35-mm ID � 10-cm long
quadrature birdcage transceiver coil (M2M). Vital signs including
ECG, respiration, and core temperature were monitored (SAI
Inc.), and the core temperature was maintained at 37 � 0.2�C
by directing warm air into the bore of the magnet. Both T10 (the
longitudinal relaxation time of the tissue before contrast agent
injection)mapping andDCE series were applied tomultiple axial
slices (4–7): one slice containing the left ventricle (LV) of the
heart was used to measure the arterial input function (AIF) from
the blood signal, whereas remaining slices were used to span the
entire tumor.

T10 was mapped for both the blood (in the left ventricle of the
heart) and tumor using an ECG-gated inversion recovery tech-
nique described previously (15, 16). The DCE series was acquired
using an ECG-gated saturation recovery technique to effectively
suppress the inflow effect (15, 17). After the acquisition of 10
precontrast images, 0.2mLof the contrast agentwas injected in 10
seconds at a constant rate via a tail vein catheter connected to a
syringe pump (Harvard Apparatus) while data acquisition con-
tinued until 80 images (for each slice) were obtained. Acquisition
parameters include FOV¼32mm,matrix size¼64� 64, effective
TR¼ 2� heart beat� 200ms, TE¼ 3ms, flip angle¼ 7� (for T10)
and 90� for DCE series. During DCE acquisition, the radiofre-
quency pulse sequence timing was recorded on a microcontroller
device, and the record was used to correct ECG-triggering errors
during postprocessing. The AIF, DCE series, and T10 maps of the
tissue were input to a pharmacokinetic model (15, 18) using the
least squares methods. Pixel-wise parametric maps of Ktrans (the
rate constant of transferring unit volume of contrast agent from
capillaries to interstitial space, min�1), kep (the rate constant
from interstitial space to capillaries, min�1), ti (the intracellular
water life time, sec), and Ve (extracellular and extravascular
volume fraction, %, Ve ¼ Ktrans/kep) were obtained as modeling
output.

Immunostaining
A recombinant HA-binding probe (HTI-601; Halozyme Ther-

apeutics) was applied to paraffin sections of the tumor as
described previously (19), and the stained slides were digitized
using an Aperio Scanner (Leica Biosystems). The HA-positive and
total pixels were counted in the viable tumor region using the
manufacturer's software (Aperio Positive Pixel Count Algorithm).
Four sections per tumor were used to estimate tumor HA content
by % positive pixels.

Quantification of drug (paclitaxel) delivery to the tumor
At 24 hours after PEGPH20 (or VEH) treatment, paclitaxel

formulated in Cremophor-EL and ethanol followed by dilution
in saline was intravenously infused (30 mg/kg) over a 30-minute
period; 2 hours after infusion, the mouse was euthanized and
tumor was harvested. Paclitaxel was extracted from the tumor
tissueandquantifiedbyhigh-performance liquid chromatography

Translational Relevance

Using relevant animalmodels, this study demonstrated that
a quantitative marker derived from dynamic contrast-
enhanced MRI can detect early responses to stroma-directed
drug for pancreatic ductal adenocarcinomawith a high level of
hyaluronan (HA). This imaging tool has the potential to
noninvasively evaluate the stromal hyaluronan level of the
entire tumor mass.
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(HPLC) following a published protocol (20). Briefly, tumor
tissue was weighed and homogenized in a 10:1 ratio (v/w) of
buffer [10 mmol/L Tris, 1 mmol/L EDTA, and 10% (v/v)
glycerol, pH ¼ 7.4] and tissue. The homogenate was extracted
with ethyl acetate (1:2 v/v, homogenate/ethyl acetate) and
centrifuged for 15 minutes at 16,000 � g. The supernatant
was collected, dried under nitrogen, and reconstituted with
acetonitrile/water (75:25 v/v). The solution was filtered
(0.2 mm) and analyzed on an HPLC (JASCO) equipped with
a VIVA C18 column (5 mm 250 � 4.6 mm). The paclitaxel
content was estimated using a calibration curve and normalized
to the tissue weight.

Data and statistical analysis
Data are presented asmean� SD. Coefficient of variance (CV¼

SD/mean) was used to evaluate the repeatability of tumor and
blood T10 measurements. Statistical analyses were performed
using Prism 6 (GraphPad) or SPSS 22 (IBM). In paired studies,
the averaged Ktrans, kep, and ti value of the tumor measured at
baseline and posttreatment from the same group of mice were
compared using the Wilcoxon signed-rank test. The percent
changes relative to baseline were compared between treatment
groups using the Mann–Whitney U test. The level of a was set at
0.05 to evaluate significance. The distribution of pixel-wise Ktrans

values of tumors measured at baseline and posttreatment was
visualized by histograms that were constructed by calculating
frequencies of Ktrans values in each of the 21 bins: bin #1–20
hadafixedbinwidth of 0.1min�1while bin #21 included allKtrans

>2 min�1.

Results
Following the treatment and imaging schedule in Fig. 1A–C,

we first evaluated whether MRI can detect an early response to
stroma-directed drug. MRI was performed at baseline and
24 hours after a single intravenous injection of PEGPH20
(1 mg/kg) or VEH in mice bearing orthotopic tumor (4662-
KPC) or human PDA xenograft. For the orthotopic model, mice
were studied at 3–4 weeks after tumor inoculation with mean
tumor size of 255 mm2 (61–630 mm2), whereas for the
xenograft model, 6–8 weeks after inoculation with mean tumor
size 294 mm2 (range: 133–452 mm2). To evaluate DCE-MRI
responses to PEGPH20 plus gemcitabine, KPC mice were enrolled
at 13–27weeks after birthwithmean tumor size 175mm2 (50–260
mm2). KPCmice received PEGPH20 (or VEH) on day 0, 7, and 14
and gemcitabine (50 mg/kg i.v.) on day 1, 8, and 15. MRI was
performed at baseline and again 1–2 days after the treatment was
completed.

Ktrans responds to single ormultiple injections of PEGPH20 and
to combination treatments

As shown in Fig. 1D, tumor was manually defined on T10 map;
pixel-wise dynamic MR signal in the tumor was fit into a phar-
macokinetic model with the knowledge of input function (AIF)
and T10 to derive parameter maps including Ktrans. The sensitivity
of Ktrans was tested by performing DCE-MRI at 24 hours after a
single injection of PEGPH20: the timing coincided with peak
depletion of tumor HA reported earlier (21). Paired data revealed
a consistent increase of Ktrans in both orthotopic (Fig. 2A) and
human PDA xenograft model (Fig. 2B). In comparison, in most
VEH-treated tumors, Ktrans remained unchanged or decreased. In

average, Ktrans increased 56% from baseline in the orthotopic
tumors, and 50% in the xenograft model (P < 0.05 for both
models, Fig. 2D–E). The rate constant, kep, also exhibited a large
increase after PEGPH20 treatment; however, variations in kep
changes were greater than those in Ktrans.

To test responses to repeated injections, three mice were
injected with PEGPH20 weekly for 3 weeks. The paired Ktrans

values revealed a substantial increase 24 hours after PEGPH20
injection from the baseline, whereas partial recovery (reduction of
Ktrans) was observed between injections (Supplementary Fig. S1).
The pattern of Ktrans change is consistent with the recovery of
tumor HA after PEGPH20 treatment (22).

Because stroma-directed drugs are combined with gemcitabine
in clinical trials, we further tested whether DCE-MRI can robustly
detect changes resulted from combination treatments (Fig. 1C).
After three treatments of PEGPH20 þ gemcitabine, Ktrans in KPC
tumors increased 54% from baseline compared with 4% decrease
in VEH þ gemcitabine group (Fig. 2C and F), suggesting that
PEGPH20 þ gemcitabine treatments led to a sustained improve-
ment of perfusion. Representative Ktransmaps at baseline and after
treatment are shown for all three models (Fig. 2G–L). The pixel-
wise parametricmaps allowed assessment of spatial heterogeneity
of the Ktrans value across the tumor before and after treatment.

Changes of Ktrans distribution in response to PEGPH20 and
combined treatment

To gain further insights of how the three models may differ in
their intrinsic vascular characteristics and responses to stromal
therapy, we analyzed the distribution of Ktrans values using a
histogram approach, where pixel-wise Ktrans values were pooled
from individual tumors in each group. Of the three models at
baseline, KPC had the lowest frequency in the lowest bin (0–
0.1 min�1) of Ktrans (Fig. 3A–C). In the xenograft model, Ktrans

distribution was relatively narrower and shifted toward the left
compared with the other models. These findings revealed
distinct microvascular function (i.e., the xenograft has the
lowest perfusion/permeability while the KPC model the high-
est), likely determined by their location (subQ vs. orthotopic)
and the nature of tumor development (spontaneous vs.
implanted).

In response to a single injection of PEGPH20, the orthotopic
model showed a remarkable redistribution of Ktrans (red), which
was right-shifted relative to the baseline (black) or to VEH
treatment (blue). The bins representing relatively high Ktrans

values (0.5–1.1 min�1) whose frequency increased 50% or more
from baseline were marked by # in Fig. 3A, indicating increased
perfusion/permeability in response to treatment. In comparison,
Ktrans redistribution from the xenograft model (Fig. 3B) was more
limited as there were fewer # marked bins and lower Ktrans values
these bins represent (0.5–0.7 min�1). After three PEGPH20 þ
gemcitabine treatments, Ktrans distribution in KPC tumor exhib-
ited a right-shift, featuring a large increase of Ktrans in bins ranging
from 1.0 to 1.5 min�1 and �2.1 min�1 (marked by #, Fig. 3C).
This data suggest that improvement of microvascular function
(Ktrans) was sustained by stromal intervention combined with
gemcitabine.

Repeatability of DCE-MRI protocol
To reduce data variability, we standardized the DCE-MRI

protocol, including using constant Gd concentration (10
mmol/L), volume, and rate of injection via a syringe pump. Vital
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signs were maintained at physiologic level throughout the imag-
ing session. Consequently, a good reproducibility of the protocol
was obtained: longitudinal relaxation time (T10) measured from
the blood and tumor in all three models revealed low CV of 9%
and 10%, respectively, at baseline (n ¼ 23). However, neither
blood nor tumor T10 was sensitive to PEGPH20 or combined
treatment (Supplementary Fig. S2A–S2C). Because the clearance
of the contrast media takes time, it is not feasible to perform two
DCE-MRI sessions in same day to assess the repeatability of Ktrans.
Therefore, we evaluated the VEH-treated mice in paired study
separated by 24 hours (Fig. 2A and B). Despite one outlier
in Fig. 2A, the mean changes of Ktrans over 24 hours were quite

small (4–6%; Fig. 2D–E), suggesting that the Ktrans measurement
is relatively robust.

IHC and quantitative measurement of drug delivery to
corroborate imaging findings

In all three models, immunostaining revealed a remarkable
accumulation of HA in tumors of VEH-treated mice and dramatic
reduction of HA 24 hours after a single injection of PEGPH20
(Fig. 4A–F). By counting the % of HA-positive pixels in the viable
tumor regions, a significant difference in HA content was found
between PEGPH20 versus VEH-treated tumors (Fig. 4G). How-
ever, the xenograft model has higher HA level than other models

Figure 1.

Treatment, imaging, and assay protocol. A,Orthotopic and xenograft PDAmodels received one single injection of PEGPH20 (or VEH) and DCE-MRI was
performed before and 24 hours posttreatment. B, All three models received one single treatment of PEGPH20 (or VEH) and 24 hours later, tumors were
harvested for HA staining. � Only the orthotopic model was infused with paclitaxel 2 hours before euthanasia to assess drug delivery to the tumor by HPLC
detection of paclitaxel in tumor homogenate (see Methods). C, KPCmodel received 3 treatments of PEG20 each followed by gemcitabine the next day, and MRI
was performed at baseline and posttreatment. The number of mice was shown in parentheses. D, DCE-MRI acquisition and processing.
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after treatment—this is consistent with the lower posttreatment
Ktrans values (mean ¼ 0.318/min) compared with orthotopic
(mean ¼ 0.639/min) and KPC (mean ¼ 0.608/min) model
(Fig. 2A–C).

To test whether the increase in Ktrans (from DCE-MRI) was
corroborated by increased drug penetration to the tumor bed,

we infused paclitaxel in mice bearing orthotopic PDA at 24 hours
after a single injection of PEGPH20 and analyzed tumor tissues by
HPLC. Our results demonstrated that PEGPH20 treatment
resulted in >2-fold greater paclitaxel accumulation in the tumor
(Fig. 5; Supplementary Fig. S3), consistent with improved perfu-
sion/permeability revealed by Ktrans results.

Figure 2.

DCE-MRI detects responses to stroma-directed intervention (PEGPH20) in all three PDAmodels. Paired Ktrans values from orthotopic model (A) and human
xenograft before and after a single injection of PEGPH20 or VEH (B), as well as from KPCmice at baseline and after three treatments of PEGPH20 plus
gemcitabine (C). D–F, Percent changes of Ktrans and kep after the treatment from baseline. G–L, Baseline and posttreatment Ktransmap of the tumor (in color
scale) overlaid on the respective T10 map (in gray scale). � , P < 0.05 compared with VEH group (Mann–Whitney U test).
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Discussion
The unique tumormicroenvironment presented by the fibroin-

flammatory stroma in PDA not only promotes tumor progression
but also underlies resistance to treatment. Conflicting results may
reflect the complexity of stroma-tumor interactions, because
genetic ablation of stromal fibroblasts or the sonic hedgehog
(SHH) pathway appeared to enhance tumor aggressiveness (23).
Conversely, reversal of desmoplastic stroma by stroma-directed
drugs including PEGPH20, vitamin-D analogues (24), SHH inhi-
bitors (25, 26), and CD40 agonist antibody (27) have shown
promise to overcome gemcitabine resistance and to extend the
survival of KPCmice. Importantly, evidence from clinical trials of
PEGPH20 (12) and CD40 (27) suggests that stroma-directed
approaches lead to more effective management of PDA. Striking-
ly, drugs targeting different stromal components or signals induce
similar changes in the microvasculature. For example, PEGPH20
selectively degrades HA in the ECM (2, 21), whereas calcitriol/
paricalcitol activates the vitamin-D receptors on pancreatic
stellate cells (24, 28). Both drugs, however, have been shown
to improve microvascular function and penetration of small-
molecule drugs into the tumor (21, 24, 28, 29). Considering that
microvasculature is an integral part of the stroma, the converging
effect of stroma-directed drugs is not surprising, but suggests that
an imaging marker sensitive to microvascular function may have
general application for various stroma-directed drugs. To date,
most DCE-MRI studies have been applied to assess antivascular

therapies, which induce a decrease in Ktrans when the tumor
responds positively (9, 30). In contrast, stroma-directed therapy
induced an increase in Ktrans, resulting in a more favorable
dynamic range and sensitivity of DCE-MRI in this new applica-
tion, given that PDA is poorly perfused before treatment.

A major effect of PEGPH20 on tumor stroma is to degrade
extracellular HA, leading to relief of IFP and reopening of other-
wise collapsed microvasculature (2, 21). The improvement of
vascular function was captured by DCE-MRI through the Ktrans

metric. Indeed, Ktrans elevation was detected as early as 24 hours
after a single injection of PEGPH20 (Fig. 2), after repeated weekly
injection (Supplementary Fig. S1), as well as after three combined
(PEGPH20 þ gemcitabine) treatments (Fig. 2). Increase of Ktrans

was corroborated with reductions of tumor HA level in all three,
HA-accumulating PDAmodels, including autochthonous, ortho-
topic, and xenograft model. Taken together, the effects of
PEGPH20 and treatment-inducedDCE-MRI changes were robust-
ly achieved in a variety of stroma-dense tumors. This observation
bolsters confidence that the technique may demonstrate appli-
cability in human trials as well. In clinical trials of PEGPH20, the
patients' HA status of the tumor was assessed by endoscopic
ultrasound guided biopsy, which cannot sample the entire tumor
and is limited in robustness. Validation of DCE-MRI marker
would provide a noninvasive, quantitative approach to evaluate
the HA level of the entire tumor mass.

Ktrans represents the combined contribution of vascular perme-
ability and perfusion instead of measuring one or the other. This

Figure 3.

Histograms of Ktrans distribution at baseline, after single PEGPH20 or VEH treatment in orthotopic (A) and xenograft (B) model. Baseline and postcombined
treatment for the KPCmodel (C). Treatment and imaging schedules are the same as in Fig. 2. In A and B, the baseline histogram (black) is pooled from baseline
Ktrans values of both treatment groups, whereas in C, Ktrans values at baseline and posttreatment of PEGPH20þGEM group were analyzed (the control group was
not plotted due to small n). # marks bins whose frequency is�1% and had an increase of� 50% compared with baseline.
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feature is inherentwithKtransobtainedusing FDA-approved small-
molecule Gd-contrast agents. For Ktrans as a stromal marker,
this feature could increase the sensitivity because microvascular
permeability and perfusion were both increased after stromal
intervention (3). DCE-MRI studies with quantitative endpoints

are being evaluated in multicenter clinical trials of other cancers,
such as prostate and breast cancer (31–34). Quantitative
DCE-MRI in human abdominal applications including PDA will
be facilitated by motion-robust, rapid imaging techniques and
their feasibility in the clinic has been shown (35–37). A stan-
dardized clinical DCE-MRI protocol (38) is expected to help
control data variability across centers. In conclusion, the proof-
of-the-concept study has shown that DCE-MRI is a sensitive and
robust quantitative tool for evaluating stroma-directed inventions
in preclinical PDA models, and the data support its further
evaluation in clinical trials.
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