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Cancer is a systems problem

Interconnected systems and processes:

► Single-cell behaviors

► Cell-cell communication

► Physics-imposed constraints (e.g., diffusion)

► Systems of systems (e.g., immune system)

In cancer, these systems fall out of balance.

Treatments target parts of these systems.

As with any complex system, changing one 

part can have surprising effects!

Modeling can help understand this system.                                 

This is multicellular systems biology. 

If we can control these systems, we've arrived 

at multicellular systems engineering. 

Metastatic seeding in            

1 cm2 of liver parenchyma
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Analogy: multicellular biology as a play

► The microenvironment is the stage. 

► The cells are the actors. 

► The cells follow their own scripts. 

► BUT: 

▪ The scripts change based on the stage. (ME-dependent phenotype) 

▪ The actors’ dialog is critical. (cell-cell communication) 

▪ The actors can tear up and remodel the stage. (tissue remodeling)

▪ The actors can ignore their scripts and ad lib. (Mutations, evolution)

It’s our job as scientists to figure out each actor’s 

script by watching the play. 

Clinicians and engineers want to rewrite the script.
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Cancer immunotherapy (main issues)

► Immune system is altered to increase the response to cancerous cells

▪ Immune cells can recognize tumor cells as a threat

▪ Immune cells can either destroy or induce death in tumor cells

▪ Most common: block PD1/LPD1 pathway stop immunosuppression

► It's been game changer in metastatic melanoma, with durable and even 

complete responses in a previously incurable cancer. 

► Only 20% of patients have durable partial or complete response

► Systems problem: immune system can both help and hurt tumor cells

Can we understand and help the remaining 80%?
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Simulation toolbox
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BioFVM: Simulating 3-D biotransport

Design goal: Simulate multiple diffusing substrates in 

3D with desktops or single HTC/HPC nodes

Typical use: pO2, glucose, metabolic waste, signaling 

factors, and a drug, on 10 mm3 at 20 µm resolution

Features:

► Off-lattice cell secretion and uptake

► 2nd-order accurate (space), 1st-order accurate (time), 

numerically stable 

Method:

► Operator splitting, LOD, customized Thomas 

solvers, etc.

► Standard C++11, cross-platform

► OpenMP parallelization

► O(n) cost scaling in # substrates, # voxels

► Easy to simulate 5-10 substrates on 106 voxels 

Reference: Ghaffarizadeh et al., Bioinformatics (2016)

DOI: 10.1093/bioinformatics/btv730

1,000,000 voxels

x = 10 μm 

t = 0.01 min

Simulate 2 minutes

# of substrates
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http://dx.doi.org/10.1093/bioinformatics/btv730
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PhysiCell: A multicellular framework

Design goal: Simulate 106 or more cells in 

3D on desktops or single HPC nodes

Features:

► Off-lattice cell positions

► Mechanics-based cell movement

► Cell processes (cycling, motility, …)

► Signal-dependent phenotype

► Can dynamically attach custom data and 

functions on a cell-by-cell basis

► Deployed from Raspberry Pi to Crays

Method:

► Standard C++11, cross-platform

► OpenMP parallelization

► O(n) cost scaling in # cells

Reference: Ghaffarizadeh et al., PLoS

Comput. Biol. (2018)

DOI: 10.1371/journal.pcbi.1005991

Try this model yourself! (2D)

https://nanohub.org/tools/pc4heterogen

Competition in a 3-D tumor
[View on YouTube (8K)]

2019 PLoS

Computational Biology 

Research Prize for

Public Impact

http://dx.doi.org/10.1371/journal.pcbi.1005991
https://nanohub.org/tools/pc4heterogen
https://www.youtube.com/watch?v=16EyDBf0l_M
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Example: 

tumor-immune interactions



Macklin lab

MathCancer.org @MathCancer

Simple model of cancer immune response
Heterogeneous tumor cells (blue to yellow):

► Cycle entry rate scales with O2

► Cells necrose in very low O2

► Yellow cells are most proliferative; 

▪ blue are least proliferative

► Yellow cells are most immunogenic 

▪ simplified model of MHC

Immune cells (red):

► Biased random walk towards tumor

► Test for contact with cells

► Form adhesion

► Attempt to induce apoptosis

▪ (e.g., FAS receptor)

▪ success depends on immunogenicity

► Eventually detach from cell, continue search

Movie: [ View on YouTube (4K) ] 

References:

► Ghaffarizadeh et al. (2018)

► Ozik et al. (2018)

► Ozik et al. (2019)

Try this model yourself! (2D)

nanohub.org/tools/pc4cancerimmune

https://www.youtube.com/watch?v=nJ2urSm4ilU
https://doi.org/10.1371/journal.pcbi.1005991
http://dx.doi.org/10.1186/s12859-018-2510-x
https://dx.doi.org/10.1101/573972
nanohub.org/tools/pc4cancerimmune
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Scaling up from demo to science … 

► Early insight: immune cell homing is non-intuitive

► Key immune cell parameters:

▪ Random motility bias (biased random walk): 

● How much randomness to we allow in motility?

▪ Immune cell attachment rate: 

● How quickly do immune cells form new adhesions, instead of wandering? 

▪ Immune cell attachment lifetime:

● How long do immune cells try to kill before giving up? 

► Combinatorics:

▪ 3 parameters, 3 levels per parameter

▪ 33 = 27 simulations

► Simulations are stochastic! Need at least 10x replicates for each condition!

▪ 33 x 10 = 270 simulations

▪ 2 days per simulation → 1.5 years of computing!!

We need high-throughput computing to do the science!
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What we really need:

Extreme-Scale Model 

Exploration



EMEWS:

EXTREME-SCALE MODEL EXPLORATION WITH 

SWIFT



LIMITS OF CURRENT MODEL EXPLORATION 
APPROACHES

▪ For full impact and confidence in results, we need robust 

characterization of model parameter spaces. 

▪ These full characterizations are difficult in practice: 

– Large parameter spaces require adaptive sampling

– Constraints on which methods are feasible

– Hand tuning may be “good enough”

– Ad hoc approaches require "heroics" and are hard to generalize

– Expertise mismatch:

• Domain experts don't have the HPC expertise to scale

• HPC experts don't have the scientific domain expertise

– Large-scale investigation viewed as too "expensive"

▪ Result: Scientists avoid entire classes of "off limits" investigations
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Multi-language ME and models: R, Python, Java, Julia, C++,…



E x t r e m e - s c a l e  M o d e l  

E x p l o r a t i o n  w i t h  S w i f t

h t t p : / / e m e w s .o r g
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Ozik et at al. 2016. “From Desktop to Large-Scale Model Exploration with 

Swift/T.” In Proc. Winter Simulation Conference.

Available at: https://www.informs-sim.org/wsc16papers/019.pdf

Multi-language ME and models: R, Python, Java, Julia, C++,…

Winner: 
2018 R&D 100 Award 

(SWIFT/T) 

https://www.informs-sim.org/wsc16papers/019.pdf


BENEFITS OF DIRECTLY 
INCORPORATING EXTERNAL CODE

▪ No need to port the exploration logic into the workflow language 

– results: Remove effort overhead, reduce "translation" errors

▪With reduced "lock-in", easy access to the latest ML methods

– Python: DEAP, scikit-learn, Keras

– R: caret, randomForest, EasyABC, hetGP

– result: easily compare utility and performance of new methods

▪ME algorithms are only minimally aware of EMEWS context

– result: can still use methods from non-massively parallel origins

18
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First results: 

3D parameter survey
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Example: 270 3D simulations in 1 weekend

Blue = better

Less Random
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Reference:

Ozik et al. (2018)

https://doi.org/10.1186/s12859-018-2510-x
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New results: 

6-parameter design problem
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Follow up study

► We missed a lot of parameters. Let's increase to a 6-D design space. 

1. Immune cell apoptosis rate (related to total killing capacity)

2. Oncoprotein threshold pT (cancer cells are invisible if p < pT)

3. Immune kill rate (rate attached immune cells can induce apoptosis)

4. Immune cell attachment rate 

5. Immune cell attachment lifetime

6. Immune cell migration bias

► Design space is a constrained hypercube:

▪ Biological constraints

● Cells can only move so fast

● Limits of receptor dynamics …

▪ Clinical constraints

● Can't use infinitely many immune cells

● Sensitivity limits (otherwise overactive immune system, cytokine storms, etc.) …

original 

parameters
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Four scenarios to explore

► Cancer control

1) Number of tumor cells at end (Nfinal) doesn't exceed initial count (Nstart)

► Cancer remission

2) Can we reduce cancer cells to 10% (Nfinal ≤ 0.1 Nstart)

3) Can we reduce cancer cells to 1% (Nfinal ≤ 0.01 Nstart)

► Treatment optimization:

4) Can we minimize Nfinal?

Approach: 

Problem 4 is fairly traditional: 

Use genetic algorithm (*)

Problems 1-3 are harder: 

Can't densely sample 6-D design space! (Even on HTC!)

531,441 discrete points in design space

Use active learning to find the shape of the "valid design" region
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Results

► We explored 4 treatment scenarios: 

▪ Stable scenario (Nfinal≤ Nstart): 19.3%

▪ 10% scenario (Nfinal≤ 0.1 ⋅ Nstart): 6.2%

▪ 1% scenario (Nfinal≤ 0.01 ⋅ Nstart): 1.8%

▪ Optimal designs (minimize Nfinal): ⊆ 1% set

► HPC gives us the topology of the design space:

▪ More aggressive treatment goals drastically 

shrink the valid design space 

▪ The optima aren't particularly robust:

● Variability can easily push us outside the 1% case

● Could strongly select for therapeutic resistance 

Reference:

Ozik et al. (2019)

http://dx.doi.org/10.1039/c9me00036d
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Results (continued)

► HPC + machine learning allows us to approach 

bigger classes of problems

▪ ~ 48,000 core hours for each scenario

▪ ~ 30,000 to 40,000 simulations per scenario

● Active learning: Reduce from 107 to 104 simulations

▪ ~ 250 (nonstop) days on high-end workstation

▪ ~ 2 weeks (nonstop) on a smallish cluster 

▪ ~ 12 hours on a Cray

Sample designs from the study
[ View on YouTube ]

Reference:

Ozik et al. (2019)

Try this model yourself! (2D)

nanohub.org/tools/pc4cancerimmune

https://youtu.be/6GPXZvlNJBg
http://dx.doi.org/10.1039/c9me00036d
https://nanohub.org/tools/pc4cancerimmune
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Benefits of active learning

► For each scenario (e.g., 10% scenario), we built a RF of binary DT classifiers: 

▪ True: points that meet the design goal (e.g., Nfinal ≤ 0.1 Nstart)

▪ False: points that don't meet the design goal (e.g., Nfinal > 0.1 Nstart)

► Rank the importance of parameters based on the Gini coefficients

▪ Most important: apoptosis rate (relates to T-cell exhaustion)

▪ Next most important: oncoprotein threshold (relates to immunogencity)

► Most optima were near the hypercube boundary 

▪ Barriers to therapy success are driven by biological and clinical constraints

► A basic model can predict key drivers in treatment response

with no molecular biology 
Reference:

Ozik et al. (2019)

http://dx.doi.org/10.1039/c9me00036d
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Future directions
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Multi-stage biosystems design

1. Work with domain experts in medicine, biology, chemistry, physics: 

▪ Expert observations and data drive model rules

▪ Choose design goals (e.g., build a tissue, control cancer population)

2. Build and explore a multicellular simulation model

▪ Run thousands (or millions!) of simulations on HPC

▪ Find model rules that achieve the design goal

3. Work with domain experts in synthetic biology, molecular engineering:

▪ Implement the cell programs: growth factors, siRNA, synbio …
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Improvements with next-gen computing

► If we can improve performance:

▪ Faster diffusion solvers (e.g., via GPU computing)

▪ Hybrid OpenMP-MPI for cell agents

▪ AI accelerations

► And if we could run on next-gen HPC systems, we could:

▪ Simulate more immune cell types

● More sophisticated models of immune-immune interactions

● More sophisticated models of immune differentiation 

● More sophisticated models of tumor-immune interactions

▪ Add molecular-scale effects to each cell agent

● Boolean networks or systems of ODEs for each cell

● represent at SBML, parse, attach model instance to each cell

● receptor and other signaling models 

▪ Run the high-parameter studies in full 3D
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Moving towards the clinic: 

digital twins



"Digital Twins" for 

predictive oncology

Team leads
Tina Hernandez-Boussard, Stanford

Paul Macklin, Indiana University

Tanveer Syeda-Mahmood, IBM Research

Ilya Shmulevich, Institute for Systems Biology

Jonathan Ozik, Argonne National Lab

Nicholson Collier, Argonne National Lab

Emily Greenspan, NCI

Carolyn Lauzon, DOE 
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Emerging joint initiative: DOE, NCI, Academia, National Labs



Digital Twin Concept

1. Patient and oncologist discuss 
goals and preferences

2. Clinicians build a "digital twin"

3. Clinicians use HPC to simulate  
thousands of treatment 
options on the virtual twin

4. Patient and clinician explore 
risks, benefits, side effects

5. They choose a plan and 
monitor progress against their 
digital twin

32

Treatment Consultation

Treatment Exploration

digital twin

Patient Data

High-throughput modeling with digital twins for the clinic
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Opening up high-tech

resources to the public
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Jupyter-based GUIs

► Goal: make the simulator user-friendly, available without installing / compiling

The Jupyter notebook and executable can be cloud-hosted as an app. 
This allows model sharing without download, compiling, and other difficulties.

PhysiCell

simulation

Simulation 

data 

GUI:

settings

Jupyter

notebook

GUI:

output

Jupyter

notebook

XML 

config file
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Use case: "Try this model yourself!"

► With xml2jupyter, we can automatically create a Jupyter-based GUI for any 

PhysiCell model, and host it on nanoHUB as an interactive model. 

► The apps can easily be included in talks, posters, and presentations.

Try this model yourself! (2D)

nanohub.org/tools/pc4cancerimmune

https://nanohub.org/tools/pc4cancerimmune


Macklin lab

MathCancer.org @MathCancer

HPC-powered 3D simulations for the public

► Users run a cloud-hosted PhysiCell model with a friendliy GUI:

1. Set up a big 3D model via cloud interface

2. GUI initiates simulations on remote HPC. 

3. Results delivered back to the GUI, just as before.

Untrained laypeople could run a sophisticated 3D simulation on the web, 

faster than trained scientist users can today. 

The general public can try sophisticated models and HPC.



Macklin lab

MathCancer.org @MathCancer

Some notes (and thank you!)

► Collaborations and exchanges

▪ Seeking experimental collaborators for immunoctherapies

▪ We're happy to help you adapt PhysiCell (+HPC, +nanoHUB) to projects

▪ We write letters of support for travel fellowships to host IU visitors:

● Learn PhysiCell, write models together, and share interactive models on nanoHUB.

● So far: University of Sydney, Barcelona Supercomputing Center, EU-funded 

nanotherapy

► (Possibly) hiring a postdoc

▪ I will likely have funding for a 3-year postdoc soon

▪ Work on breast cancer metastasis

▪ Seeking a math/computing savvy postdoc to push the work

▪ Opportunities to refine PhysiCell and visualization 
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