NIH/NCI R21-CA209848

# ALGORITHMS FOR LITERATURE-GUIDED MULTI-PLATFORM IDENTIFICATION OF CANCER SUBTYPES

Dongjun Chung, Ph.D.

Medical University of South Carolina (MUSC)

ITCR 2017 Annual Meeting, Santa Cruz, CA

- Cancer subtype identification:
  - Can offer opportunities for more personalized & targeted cancer treatment.
- Great achievements have been made:
  - The Cancer Genome Atlas (TCGA):
    - Integrative approach using multiple genomic data types.
    - e.g., mRNA expression, somatic mutation, copy number alteration, DNA methylation, ...
  - iCluster+ (Mo et al., 2013, PNAS).
    - A statistical framework for integrative analysis of multiple data types to identify cancer subtypes.

- Cancer subtype identification is often implemented at the gene level:
  - Gene-level findings are sometimes not reproducible between different studies (Glaab, 2015, Brief Bioinform).
  - Genes with weak effects might be missed in gene-level analyses (Tyekucheva et al., 2011, Genome Biol).
- Pathway-level analysis:
  - Pathway-level findings have been reported to be more robust & reproducible (Glaab, 2015, Brief Bioinform).
  - Aggregation of signals within a pathway can potentially improve statistical power to identify key pathways.

- Challenges in pathway-level analyses:
  - Incompleteness of pathway knowledge.
  - Heterogeneity in completeness & quality among existing pathway databases.
  - Optimal strategies to combine pathway knowledge from multiple databases remain to be explored, especially when we combine databases for different aspects of biology.
- Biomedical literature:
  - Can potentially supplement incompleteness of pathway annotations because it provides comprehensive information about the relationship among genes.
  - Can potentially serve as a common knowledgebase to integrate multiple existing pathway databases.

- Current challenges:
  - Pathway knowledge in existing databases & biomedical literature are not fully utilized and investigated for the cancer subtype identification.
  - There is a need for an effective statistical approach to improve pathway knowledge by integrating multiple existing pathway databases, also along with biomedical literature.
- NIH/NCI R21-CA209848 (MPI: D Chung & L Kelemen):
  - Aims to develop novel algorithms to improve robustness & interpretability in identification of cancer subtypes & key molecular features.
  - Integration of multiple genomic data types, biomedical literature, & existing pathway databases.

### SPECIFIC AIMS

Improve pathway knowledge by integrating biomedical literature with multiple existing pathway databases.

Improve identification of cancer subtypes & key molecular features, by integrating pathway annotation with multiple genomic data types.





### Ontology fingerprint:

- Collaboration with W. Jim Zheng, UT Health at Houston.
- Qin et al. (2014), NAR.



### Ontology fingerprint:

- Association measures between genes and GO terms using hypergeometric tests.
- p-values become smaller as more abstracts are shared.
- Take into account how much each gene & GO term have been studied in biomedical literature.

#### **Ontology fingerprint of BRCA1**

#### Ontology fingerprint of BRCA2

| DNA repair                 | 3.48e-158  | DNA repair                 | 1.95e-36 |
|----------------------------|------------|----------------------------|----------|
| Double-strand break repair | 1.20e-25 🔪 | Strand invasion            | 8.32e-13 |
| Methylation                | 1.21e-18   | DNA recombination          | 5.86e-12 |
| Cell cycle checkpoint      | 3.64e-18   | Double-strand break repair | 1.61e-08 |
| Mismatch repair            | 8.95e-13   | Recombination repair       | 2.37e-07 |

# AIM 1. LITERATURE + EXISTING PATHWAY DATABASE

- **BioLitDB**: Web interface for literature mining.
  - Gene names, disease names, & gene ontology terms.
  - Currently internally developed & tested.
  - Plan public dissemination by end of this year.



### bayesGO:

- Bayesian bi-clustering approach to identify novel pathways using the ontology fingerprint data.
- Take care of redundancy & inter-correlation among GO terms.
- Facilitate interpretation of novel pathways by automatically assigning groups of GO terms to each novel pathway.

#### Gene cluster



### bayesGO:

- Chung et al. (2017), To appear in Statistics in Medicine.
- R package 'bayesGO'.
  - bayesGO(): Fit model.
  - predict(): Gene and GO term clustering.
  - plot(): Plot the association heatmap.



https://dongjunchung.github.io/bayesGO/

- Work in Progress:
- BioLitDB:
  - Improve user interface & public dissemination.
  - Incorporate pathway identification & visualization tools.

### bayesGO:

- Integrate biomedical literature with multiple existing pathway databases.
  - A semi-supervised clustering approach that utilizes multiple existing pathway databases as prior knowledge for the pathway prediction based on biomedical literature data.
- Utilize the GO tree structure information.

### pathclust:

- Simultaneous identification of patient subgroups & key molecular features.
  - Identify key pathways, along with key genes in each pathway, associated with patient subgrouping.
- Utilization of pathway information.
  - Improve robustness & stability in patient subgrouping.
- Utilization of survival outcomes, if available.
  - Guide identification of patient subgroups and key molecular features using their association with survival.

### pathclust:

 Multi-step approach integrating sparse partial least squares (SPLS) and LASSO Cox regression approaches.



### https://dongjunchung.github.io/pathclust/



#### pathclust

pathclust: Pathway-guided identification of cancer subtypes ===

path clust is a statistical approach to improve prediction of cancer subgroups and identification of key genes and pathways by integrating information from biological pathway databases.

#### Installation

To install the development version of pathclust, it's easiest to use the 'devtools' package.

```
#install.packages("devtools")
library(devtools)
install_github("dongjunchung/pathclust")
```

#### Usage

The R package vignette will provide a good start point for the genetic analysis using pathclust package, including the overview of pathclust package and the example command lines:

```
library(pathclust)
vignette("pathclust-example")
```

### R package 'pathclust'

- prefilter(): Prefiltering.
- selectGene(): Gene selction. -> coef()
- selectPath(): Pathway selection. -> coef()
- predict(): Patient subgroup prediction.
- plot(): Plot Kaplan-Meier, Hazard ratio, and ROC curves for predicted subgroups.

### YouTube tutorial video:

 https://youtu.be/0qaovm MJPpY

Work in progress:

### • pathclust:

- Joint analysis of multiple genomic data types.
- Simultaneous utilization of multiple pathway databases.
- Incorporate various approaches to handle the issue of gene overlap between pathways.
- Implement a Bayesian approach to unify the framework
   & to incorporate various prior knowledge.

### Application:

 Utilize novel pathway knowledge generated from Aim 1, which integrates biomedical literature with multiple existing pathway databases.

## AIM 3. MUCINOUS OVARIAN CANCER SUBTYPE IDENTIFICATION

- Mucinous ovarian cancer (MOC):
  - Still relatively less studied; its subtypes remain poorly characterized in spite of its severity.
  - In need of improved treatments targeted to MOC.
- Planned work:
  - The statistical methods developed in Aims 1 & 2 will be applied to our cancer genomic data for MOC patients.
    - BioLitDB, bayesGO, & pathclust.
  - Will also be integrated with corresponding TCGA data for colorectal cancer, endometrial cancer, & gastroesophageal adenocarcinoma.



# HINTING OF HEALTH





### Chung lab, MUSC

### **ACKNOWDGEMENT**





Dongjun Chung (Biostatistics)

Linda Kelemen (Cancer Epidemiology)







Zhenning Yu





Andrew Lawson (Biostatistics)



Gary Hardiman (Bioinformatics, Center for Genomic Medicine)



Wei Wei (Yale Cancer Center)

### Questions?

- Lab website: <a href="https://sites.google.com/site/statdchung/">https://sites.google.com/site/statdchung/</a>
- GitHub: <a href="https://github.com/dongjunchung/">https://github.com/dongjunchung/</a>
- e-mail: <a href="mailto:chungd@musc.edu">chungd@musc.edu</a>.