Computational Framework for Single-Cell Genomics of Tumors

- Workflow from tissues to trees
- Viewer demo
- Patient cases
- Adoption
- Future

Sparse genomic analysis of individual nuclei by sequencing (s-GAINS)

Informatics: from read sets to integer-valued CN profiles

Break-point coincidence analysis

Break-point incidence table

	A	В	С
BP1	+	+	-
BP2	+	+	-
BP3	+	-	-
BP4	+	-	+

В

		+	-
Α	+	2	2
	-	0	0

Single-cell genomic profiling of prostate cancer

Surveillance

Current practice High PSA (>4ng/ml), suspicious DRE TRUS/CT/MRI Core or FNA biopsy Z Localized, Gleason<6 Else aggressive treatment, RP if possible Localized, Gleason≤6, >60 yrs

Shortcomings of conventional pathology:

- 65% probability that any 2 pathologists disagree by ≥ 1 unit of Gleason score.
- Differing scores on core vs. post-RP biopsies.
- Some of low-scoring cases may be aggressive due to subclonal cell populations that go undetected.

Wigler
Tewari
Lepor

C				Gleason Score			Total #	
Case	Age	Sample ⁵	Sectors	Final**	Clonal	Subclones	Clonal Cells	Total # Cells
nyu003 C	47	PBXW	13	NA	no	no	0	347
nyu002 E	72	PBXW	13	NA	yes	no	5	581
cor002 E	64	TBXP	5	6 (3+3)	yes	no	4	402
nyu005 C	64	PBXW	14	6 (3+3)#	yes	no	8	309
nyu007 E	65	PBXW	13	7 (3+4)^	yes*	yes	40	270
nyu001 E	63	PBXW	14	7 (3+4)	yes*	yes	176	622
nyu010 E	79	PBXW	15	7 (3+4)	yes*	no	22	341
nyu011 C	63	PBXW	10	7 (4+3)	yes	no	15	221
nyu004 C	75	PBXW	14	7 (4+3)#	yes*	no	48	314
cor003 E	80	TBXP	5	9 (4+5)	yes	yes	139	347
cor001 C	77	TBXP	6	9 (5+4)	yes	no	87	261
Average Age	67	Total	122				544	4015

PBXW = Prostate Biopsy Washing, TBXP = Tissue Biopsy Prostatectomy

Can single-cell genomic profiling help desambiguate pathology?
In particular, clones of cells with major genomic alterations → likely aggressive malignancy.
Can we detect them?

^{**} Gleason score of radical prostatectomy specimen: "Downgraded, "Upgraded

^{*}Independent Clones of ≥ 2cells

C = Concise, E = Expanded (case reports in supplemental section)

Flat vs unstable cell genomes

Adoption:

- @MSKCC (T. Baslan, BRCA, single cells)
- @NYGC (L. Muthuswamy, PAAD, organoids)

C-DOP-L approach provides uniform, unbiased amplification of single-cell genomes, accurate determination of copy number states and reveals genomic heterogeneity in breast cancer cell

Timour Baslan et al. Genome Res. 2015;25:714-724

Next steps

IT

- Finalize and publish the Viewer
- Dockerize the pipeline

Early detection

Detect clonal populations among cells in circulation, following depletion of nucleated blood cells.

Detecting 20

