UCSC Xena
See the bigger picture

Jingchun Zhu and David Haussler
Genomics Institute, University of California Santa Cruz
ITCR annual meeting, June 13, 2016
Genomes are the key to the future of cancer treatment.
Future requires a shared and standardized global network of data.
Most are small studies with a few samples

Lab 1 5 cell lines before and after exposure to compound X

Lab 2 8 ER+ breast cancer patients who responded poorly to hormone therapy

...

Lab 5000 10 methylation profiles of patients with mutations in chromatin remodelers
Some important large datasets ...

20,000 adult tumors (U.S.)

17,000 donors (international)

2,800 whole genome tumors

>6,000 pediatric tumors (U.S.)

10,000 benign samples
Xena Architecture Overview

Federated Data Hubs

Distributed system to host cancer genomics and clinical/phenotype data
SNPs, INDELs, large structural variants, CNV, gene-, transcript-, exon- protein-, miRNA-expression, DNA methylation
Xena Architecture Overview

Federated Data Hubs
Distributed system to host cancer genomics and clinical/phenotype data
SNPs, INDELs, large structural variants, CNV, gene-, transcript-, exon- protein-, miRNA-expression, DNA methylation

Private Data Hubs
Easy to install on your laptop or behind a firewall. Load your data using our app or the command line. *Mac, Windows and Linux.*
Can restrict access if desired
Xena Architecture Overview

Federated Data Hubs
Distributed system to host cancer genomics and clinical/phenotype data
- SNPs, INDELs, large structural variants, CNV, gene-, transcript-, exon- protein-, miRNA-expression, DNA methylation

Private Data Hubs
Easy to install on your laptop or behind a firewall. Load your data using our app or the command line. **Mac, Windows and Linux.** Can restrict access if desired

Public Data Hubs

Large datasets we already have

- 20,000 adult tumors (U.S.)
- 17,000 donors (international)
- 2,800 whole genome tumors
- >6,000 pediatric tumors (U.S.)
- 10,000 benign samples
Xena Architecture Overview

Federated Data Hubs
Distributed system to host cancer genomics and clinical/phenotype data

Private Data Hubs
Your restricted-access data on your laptop or behind a firewall

Public Data Hubs
1400+ datasets from more than 35 cancer types, including Pan-Cancer.

Xena Browser
Dynamically visualize and analyze cancer genomics data from this federated hub system together in your web browser. Secure, fast, and powerful. **Chrome, Firefox, and Safari.**
Data combined in the browser, ensuring data security
Collaborations – Use cases

• **GA4GH / BD2K** RNAseq recompute
 – Center for Big Data in Translational Genomics

• **PCAWG** Pan-cancer analysis of 2800 whole genomes

• Clinical Trial Use Cases
 – **CKCC** (California Kids Cancer Comparison)
 – **ITOMIC** (triple negative metastatic breast cancer trial)
GA4GH BD2K RNASeq Recompute

• Uniformly analyzed RNAseq expression of 60,000 genes and 200,000 transcripts on 20,000 pan-cancer and pan-normal samples: TCGA, TARGET and GTEx

• Performed by TOIL (pipeline architecture for genomic workflows)
 – Fast, cheap (AWS spot market)
 – Add your data! Pipeline is open-source

• Xena hosts all recompute results on GA4GH-BD2K hub for visualization, analysis and download

Hannes Schmidt, Benedict Paten, John Vivian et. al. UCSC BD2K
FOXM1 and its isoforms

FOXM1 is a transcription factor involved in cell cycle progression.

- **FOXM1a** → transcriptional repressor
- **FOXM1b & 1c** → transcriptional activators

→ Use TOIL transcript-level data to **dynamically** view isoform expression across TCGA, TARGET and GTEx (~19,000 samples)
Pan-Cancer **FOXM1** Isoform Expression

Visual Spreadsheet view

Each row is a single sample, like a spreadsheet

Data sorted left to right, any arbitrary user selected data

Data from multiple data hubs (public, private, in AWS, on laptop), combined in the browser

TOIL re-compute data from John Vivian, Benedict Paten et. al. (submitted)
Overall FOXM1 expression is higher in TCGA and TARGET tumors, and lower in normal samples.

TOIL recompute data from John Vivian, Benedict Paten et. al. (submitted)
Pan-Cancer FOXM1 Isoform Expression

Isoforms

- FOXM1b, 1c isoforms (activators) are overexpressed in tumors compared to GTEx normal samples.
- FOXM1a isoform (repressor) does not show this pattern.

18,958 samples

TOIL re-compute data from John Vivian, Benedict Paten et. al. (submitted)
Pan-Cancer *FOXM1* Isoform Expression

We see a corresponding difference in *FOXM1* regulated genes.

20k samples, any user selected genes and transcripts, viewed in real-time on a web browser

TOIL re-compute data from John Vivian, Benedict Paten et. al. (submitted)
Pan-Cancer Analysis of 2800 whole genomes

• Largest uniformly-analyzed whole genome dataset in the public domain
 – Variants within as well as outside exon regions

• We are part of the working group ‘Exploratory: portals, visualization and software infrastructure’
View *TERT* mutations along transcripts

Sample-level mutation along transcripts and 1kb up- and down-stream
View *TERT* mutations along transcripts

TERT exon region has very few somatic mutations, but mutations pile up in the promoter region.
Zooming in ...

-200bp

5' Tx start

731 Samples

3 SNVs all G->A

TERT promoter mutation pileups

Click through to UCSC Genome Browser
Explore patterns between mutation and expression

Higher TERT expression is associated with promoter mutations
Explore patterns between mutation and expression

731 Samples

Higher TERT expression is associated with promoter mutations

Yet these samples with the highest TERT expression do not have promoter point mutation
TERT promoter point mutations, SVs, and expression

731 Samples

TERT Structural Variants
Point mutations in *TERT* promoter region are mutually exclusive with upstream structural variants.
Xena Browser links data across public and private data hubs

- OPEN ACCESS data
- PRIVATE data
Another view: Kaplan-Meier analysis

By mutation

By expression
Another view: Kaplan-Meier analysis

Test statistics computed in the browser – data is not sent to a server, maintaining data privacy
Interpretation of N=1 case

N=1 patient sequencing data

RNAseq pipeline
Mutation pipeline
Copy number + SV pipeline

BD2K TOIL Pipelines

Public Hubs: TCGA, ICGC, TARGET, ...

Xena Hub For N=1

Laptop
Xena Hub

User's private data

Cloud computing environment

Xena Browser
The California Kids Cancer Comparison (CKCC) project provides the power of large-scale bioinformatics to improve patient outcome. It analyzes each patient’s tumor in the context of thousands of pediatric and adult tumors that have undergone similar characterization.
Clinical Trial – Individual 011

- 26-year-old non-Hispanic Caucasian male
- July 11, 2015: presented with shortness of breath, elevated heart rate and blood pressure, as well as blurry vision
- August 2, 2015: diagnosed with a pons/DIPG (Diffuse Intrinsic Pontine Glioma) based on brain MRI
- August 10, 2015: having met eligibility criteria, consent was obtained and patient was enrolled
- August 11, 2015: underwent surgery to remove the tumor
- Per institutional protocol, surgery was followed by standard radiation therapy
- Current status: living
- Tumor is not a “typical” DIPG because of the individual’s age

Olena Morozova & CKCC Team
What are unique features of Individual 11 as compared to other tumors in the reference compendium?
GENE EXPRESSION OUTLIER ANALYSIS REVEALS HIGH ALK EXPRESSION IN INDIVIDUAL 11 AS COMPARED TO CKCC REFERENCE COMPENDIUM

![Graph showing ALK expression by cancer type]

N= 10,532 cases: 1 case + 40 cancer types

Olena Morozova
ALK expression is hugely higher than any other cancer except neuroblastoma, a disease where ALK is a frequently mutated gene.
Supported by Xena Composite Cohort

• Combine user-selected samples from any number of studies, from public or private hubs on the Xena Browser

• No need to download large datasets to combine! Data stays where it is while still maintaining data privacy

• Clinical Driver Projects: N=1 trial case combined with all TCGA and TARGET cases
Our tools are connectable and reusable

Modules that are embeddable in other web applications

- **KM statistics** - compute right in user’s web browser, no need to send data to R server
- **Interval tree** - fast genomic coordinate overlapping query
- **Visual spreadsheet** – embedding inside open source ICGC portal underway
- Contribute to community through BioJS

Turn-key functional genomics data hub

- Installable across all platforms and computing environments
- **Javascript and Python API** to connect to other applications
Latest Usage (May 2016)

• Xena Browser
 – 5700 users
 – Average duration: 10 min
 – Page hits: 1 million
 – Data download: 230GB

• Xena Hub
 – downloads: 73
 – Mac: 58 Linux: 10 Windows: 5
User outreach and support

• Working with individual biology research projects
• Email support, google-group, twitter, mailing list, newsletter, help doc
• Video tutorial (708 views)
• Workshops, conferences (~6/year)
Our Team
Brian Craft
Mary Goldman
Jing Zhu
David Haussler

Collaborators
TOIL Team & UCSC BD2K center
CKCC Team
TumorMap Team
ITOMIC trial
MuPIT/CRAVAT
BioJS
PCAWG working groups
UCSC Genomics Core
Thanks

http://xena.ucsc.edu

https://www.youtube.com/watch?v=go38U6iLjsw