mint (and annotatr): Assessing DNA methylation and hydroxymethylation signatures in cancers

Maureen Sartor
Associate Professor
Department of Computational Medicine and Bioinformatics
University of Michigan
Overview of project

• R01 Supplement – 2 yrs
• **mint** – methylation integration
 • Command line pipeline
 • Galaxy implementation
• **annotatr** – R package for fast & flexible annotation and visualization (on bioRxiv)
• Builds off of tools developed in my lab
 • **PePr** – differential binding
 • **methylSig** – differential methylation for bisulfite sequencing data
DNA (de)methylation overview

DNMTs -> 5mC (methylation)

5mC -> 5hmC (passive demethylation)

5hmC -> 5caC (active demethylation)

5caC -> 5fC (active demethylation)

Gene regulation

Passive demethylation

Represents the process of DNA methylation and demethylation, highlighting the roles of DNMTs and TETs in gene regulation through methylation states such as 5mC, 5hmC, 5caC, and 5fC.
Why study 5mC and 5hmC?

• DNA methylation (5mC) is long known to play an important role in cancers
 • Tumor suppressors are often hypermethylated, while intergenic regions are hypomethylated → DNA instability
 • Changes due to viral infections or environmental exposures and can lead to future cancer development
 • In some cancers, many of the top mutated genes are epigenetic drivers
• Hydroxymethylation (5hmC) has been observed to:
 • correlate better with gene expression levels than 5mC
 • Serve as a good biomarker for recently activated genes
 • Often occur near exon/intron boundaries and correspond to differential splicing
bisulfite sequencing

- Bisulfite treatment plus sequencing allows quantitative distinction between methylated and unmethylated CpG’s
- But it does NOT distinguish between 5mC and 5hmC
Genome-wide approaches to assess DNA methylation/hydroxymethylation

Methods to assess 5mC + 5hmC:
- HumanMethylation450K BeadChip
- WGBS (whole genome bisulfite sequencing)
- RRBS (reduced representation bisulfite sequencing)

Methods to assess 5mc only:
- MeDIP-seq or MethylCap-seq (affinity-based)
 - oxBS-seq – in parallel with bis-seq, measure 5mC only

Methods to assess 5hmC:
- TAB-seq – in parallel with bis-seq, measure 5hmC only
- hmeDIP-seq or hMe-Seal (affinity-based)
• Bisulfite sequencing methods – WGBS, RRBS
• Affinity-based methods – meDIPseq, hmeDIPseq
Main goals

• Complex workflows and analysis designs are required for analysis/integration/interpretation of 5mC/5hmC experiments

 → quick reproducibility
 → flexibility
 → transparency
Supported workflow designs

Hybrid

Bisulfite-based assay and pulldown assay.

or

Pulldown

Pulldown assays for mc and hmc.

Sample-wise

Integration on a per-sample basis.

and

and

Comparison-wise

Integration on a per-group basis.
Typical hybrid workflow (without mint)

Bisulfite sequencing steps:
- FastQC
- Trim Galore!
- Bismark alignment
 - Methylation extractor
 - methylSig
 - multiQC
- Bowtie2 alignment
- multiQC
- PePr
- MACS2
- integration
 - Genome browser
 - visualizations
 - annotation

Pull-down steps:
- Custom scripts
New additions in mint

• Made use of many current tools

• New additions include:
 • Common SNP filter (C→T, G→A), human only
 • Significantly reduced run-time for methylSig and PePr
 • Added alternative experimental designs for methylSig
 • Classification of CpG sites or regions by 5mC/5hmC status
 • Automatic genome browser track hub creation
 • annotatr – to annotate and visualize results
mint pipeline

User modifications

- experiment annotation
- config
- makefile

- bisulfite_align
- bisulfite_compare
- pulldown_align
- pulldown_compare
- pulldown_sample

- sample_classify
- compare_classify

Outputs

- multiQC
- .RData
- basic stats
- track hub directory
- plots
- Indiv. tool outputs
annotatr: simple, fast & flexible annotation of genomic regions
Example: high fold change DhMRs enriched in enhancers
applications

1. Head and neck squamous cell carcinomas (Sartor lab)
 • WGBS + hmeDIP-seq

2. Mouse model age/sex, exposures (Pb, phthalate) (Dolinoy lab)
 • ERRBS + hmeDIP-seq

3. Leukemia (AML and MDS) (Figueroa lab)
 • ERRBS + hmeDIP-seq
Head and neck cancers

- 18 HPV-positive; 18 HPV-negative
- WGBS & hmeDIP-seq
- Used mint to analyze hmeDIP data
- HPV(+) samples tend to be hypo-hydroxymethylated; high 5hmC was enriched in enhancers
Example: PRDM2 DhMR

- PRDM2 is a tumor suppressor that binds to Rb; Rb is disrupted by the HPV E7 oncogene
- Multiple DhMRs near exon-intron boundaries or alternative TSS or TES.
Galaxy tools for mint

Mint-Classification
- Classify Simple R script
- Convert Pepr output for for Ucsc genome browser
- Annotatr classification combined all tools for mint
- Classify to annotatr awk command to convert classify to annotatr

Mint-Pulldown Compare
- Run PePr ChIP-Seq Peak-calling and Prioritization pipeline (PePr)
- Visualization in UCSC Genome Browser Pepr Convert Pepr output for for Ucsc genome browser

Mint-Bisulfite Compare
- MethylSig for each sequence in a file
- MethylSig To Annotatr combined all tools for mint
- Annotatr Bisulfite Align Annotatr bisalign
- From MethylSig To Bedgraph-to-bigWig combined all tools for mint

MINT TOOLS
- Bedtools
- Mint-Pulldown Sample
- Mint-Preprocessing
- Mint-Classification
- Mint-Pulldown Align
- Mint-Pulldown Compare
- Mint-Utilities
- Samtools
- Mint-Bisulfite Align
- Mint-Bisulfite Compare
Galaxy workflows
To do: Integrate with RNAseq data

• Incorporate statistical tests that integrate 5mC and/or 5hmC data with RNAseq or microarray data.

1. Link epigenetic changes to target genes and report genes mostly likely differentially regulated by 5mC &/or 5hmC. Consider both gene level and isoform level expression

2. Test for correlation across samples between 5mC or 5hmC and expression levels. Options for summarizing scores for a genomic feature (eg, CpG islands, enhancers) and assigning the genomic features to genes.

3. Prioritize DMCs/DMRs in terms of causing a functional change in gene expression, based on the significance levels and distance between the site and the gene.

• Incorporate association tests with regions of CNVs, CpG islands, TF binding sites, cancer related sets, etc.
Thank you!

Yanxiao Zhang
Raymond Cavalcante
Snehal Patil

Laura Rozek, Co-PI
Maria Figueroa, Co-I
Terry Weymouth
Yongseok Park, Post-doc (now at U. Pitt)