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“Identifying specific clinical phenotypes from EHR
data require use of algorithms incorporating
demographic data, diagnostic and procedure
JCEEHELREEIELER | codes, lab values, medications, and natural

Initiative Working : ;
Group Final Report language processing (NLP) of text documents.

“Such ‘deep phenotyping’, as it is known, gathers
details about disease manifestations in a more
individual and finer-grained way, and uses

sophisticated algorithms to integrate the resulting No':':::::rs
wealth of data with other...information. 2015

‘ﬁﬁﬁ “...will encourage data sharing and support the

FACT SHEET: development of new tools to leverage knowledge

WS | Sbout genomic abnormalities, as well as the
National Cancer

Moonshot response to treatment and Iong-term outcomes.

details
of disease
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Phenotyping Use Cases

e Cohort discovery supporting
translational science

 Targeted Therapeutics and
Personalized Medicine

* Biomarker Discovery and
Validation

 Pharmacogenomics
 Pharmacovigilence
* Disease Surveillance
* Drug repurposing

* Point of care
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DeepPhe PrOjeCt http://cancer.healthnlp.org

 Collaboration between DBMI and BCH

* Goalis to develop next generation cancer deep
phenotyping methods

e Addresses information extraction but also
representation and visualization

* Support high throughput approach — process and
annotate all data at multiple levels (from mention to
phenotype) and across time

 Combine IE with structured data (cancer registry)
* Develop phenotyping rules/reasoners/classifiers
* Driven by translational research scientific goals
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DeepPhe Information Model
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DeepPhe NLP
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Boundary detection

Tokenization

Normalization

POS tagging

Entity Recognition

Entity Properties

deepPHE

Document Summary

Phenotype Summary
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Invasive Ductal Carcinoma. 4.4 cm
Tumor is ER-, PR-, Her2-.

Pipeline

58 yo F presents to the ER with slurred speech.

Patient has triple negative breast cancer.

Tumoris ER -, PR -, HER2 -. Patient has triple negative breast cancer.
Tumorl|is |ER |- |,|PR |- |,|HER2|- Patient |has |triple |negative|breast|cancer |.
Tumor|is |ER |neg| PR |neg|,HER2|neg|.| Patient |has |triple |negative breast|cancer |.

NN |VBZ [NNP|JJ ||NNP|JJ NNP [JJ NN VBZ|J) Jl NN |NN
Neoplasm| Estrogen Progesterone | erbB2 Patient Malignant
C3273930| Receptor Receptor protein C0030705 NEOP'C‘;‘)SOrgﬁf’llgreaST

C0034804 | C0034833 C0069515
Tumc.|ur ET Pr He|r2 Triple-Negative @~ Tumor
Tumor ER Neg PRNeg HerZ neg ERpeg PRiNeg Her2 neg Tumor
| | | | | | | |
Tumor Tumor
Phenotype  ER PR Her2 Phenotype  ER PR Her2
Receptor | Receptor receptor Receptor Receptor receptor
negative negative negative negative negative negative
Tumor
Phenotype  gp PR Her2

Receptor

negative

. Hospital

Receptor

receptor
negative
sy wniversity of Pittsburgh

" BIOMEDICAL INFORMATICS

negative



Software Development Process
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Evaluation Results

Results on BrCa development split: Template Instance System vs. Gold
(results in brackets are for the Inter-annotator agreement)

stage tnm receptors metastasis

overlapping span of template anchor (mention instance)
Precision/PPV 1(1) 1(1) 1(1) 0.94 (1)
Recall/Sensitivity 1(1) 0.97(1) 0.68(0.81) 0.78(0.3)
Template Instance Distribution: BrCa & at‘tr."but‘:ciiiuracjgg (1) 081(0.89) 0.85(0.46)
f:;s:zr:l:lis in ::\f:on:jel:tsplit :condl'tl'o.na| 1(1) n/a 1(1) 1(1)
stage 6 5 uncertainty 1(1) 1(1) 1(1) 0.2 (1)
tnm 14 30 *negation 1(1) n/a 1(1) 0.9(0.66)
receptors 62 5o *subject 1(1) n/a 1(1) 1(1)
metastasis 54 58 “generic 1(1) n/a 1(1) 0.7 (1)
train split: 4 patients, 48 documents associated neoplasm (span) 1(1) 0.62(0.79) 0.5(0.86) 0.56(0.64)
development split: 2 patients, 42 documents  concept unique identifier (CUI) 1(1) 1(1) 0.98 (1) -
body location (span) n/a n/a n/a 0.76 (1)
test method (CUI) n/a n/fa 0.92(0.78) n/a

* indicates weighted accuracy per SemEval 2015 to take into account default value
prevelance rates
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Evaluation Results

Cancer Template Distribution:
BrCa

ftinstances in
corpus
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corpus: 6 patients, 90 documents
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Results on BrCa Train & Development: Phenotype System vs. Gold
(results in parentheses are for inter-annotator agreement)

Recall/Sensitivity F1 measure

Precision/PPV

cancer 0.81 (1)
body location 0.52 (1)
body location side 0.5 (n/a)
clinical stage 1 (0.80)

clinical T value 0.40 (0.89)
clinical N value 1 (0.89)
clinical M value 1 (0.89)
pathologic T value 0.75 (0.89)
pathologic N value 0.75 (0.78)
pathologic M value 1 (0.62)

0.81 (1)
1(1)
1(n/a)
1(1)
1(1)
1(1)
1(1)
1(1)
1(0.88)
1(1)

K

0.81 (1)
0.69 (1)
0.67 (n/a)
1(0.89)
0.57 (0.94)
1(0.94)
1(0.94)
0.86 (0.94)
0.86 (0.82)
1(0.77)

faay University of Pittsburgh
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Evaluation Results

Tumor Template Distribution: BrCa

H#instances in

Results on BrCa Train & Development: Phenotype System vs. Gold
(results in parentheses are for inter-annotator agreement)

corpus Precision/PPV Recall/Sensitivity F1 measure
tumor 15 tumor 0.37 (0.79) 0.69 (0.88) 0.48 (0.84)
body location 15 *body location 1 (n/a) 1 (n/a) 1 (n/a)
body location side 11 *body location side 1 (n/a) 1 (n/a) 1 (n/a)
body clockface 6 body clockface 0.67 (0.89) 0.40 (0.73) 0.50 (0.80)
body quadrant 5 body quadrant 1(0.73) 0.2 (0.80) 0.33(0.76)
diagnosis 14 diagnosis 0.47 (0.93) 0.88 (0.93) 0.61 (0.93)
tumor type 15 tumor type 1(1) 1(1) 1(1)
er interpretation 8 er interpretation 0.75(1) 0.60 (1) 0.67 (1)
er method 5 er method 1(1) 0.25 (1) 0.4 (1)
pr interpretation 8 pr interpretation 0.75 (1) 0.5(1) 0.67 (1)
pr method 5 pr method NaN (1) 0(1) NaN (1)
her2 interpretation 7 her2 interpretation 0.67 (1) 0.5(1) 0.57 (1)
her2 method 5 her2 method 0.5 (0.83) 0.25(0.83) 0.33(0.83)

corpus: 6 patients, 90 documents *attribute used to align system and gold annotations
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Publications and Collaborations

 Towards Portable Entity-Centric Clinical Coreference Resolution
(submitted to the Journal of the Medical Informatics Association)

* An Information Model for Cancer Phenotypes (submitted to BMC
Medical Informatics and Decision Making)

* Improving Temporal Relation Extraction with Training Instance
Augmentation (submitted to the BioNLP workshop at the
Association for Computational Linguistics conference)

* ITCR Supplement to build tools for TCGA clinical data and
metadata with Mayo caCDE QA (see our poster)

* Supplement to work with SEER to extend DeepPhe methods to
cancer surveillance

e Collaboration with THYME (thyme.healthnlp.org)
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Goals for Next Year

* |E methods
— Coreference
— Temporal relations
— Template filling improvement

e Additional templates for Procedures, Medications,
Clinical Genomics, Tumor size

e New model for Ovarian Cancer

 Merging information from structured and unstructured
EMR

* Visualization of patient timelines

* Evaluation of system with breast cancer clinical research
questions (using EMR data from Pitt TCGA patients)

Boston Children’s Hospital
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DeepPhe
deepphe.boston /\ deepphe.pgh
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Demo

https://youtu.be/61gelUfD3VU
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FAKES

cTAKES Component or Function Score Score Type
Sentence boundary [2] 0.949 Accuracy
Context sensitive tokenizer [2] 0.949 Accuracy
Part-of-speech tagging [2] [10] 0.936 - 0.943 Accuracy
Shallow parser [2] 0.952;0.924 Accuracy ; F1
Entity recognition [2] 0.715/0.824 F11!
Concept mapping (SNOMED CT and RxNORM) [2] | 0.957 / 0.580 Accuracy
Negation NegEx [11] [2] 0.943/0.939 Accuracy
Uncertainty, modified NegEx [11] [2] 0.859/0.839 Accuracy
Constituency parsing [12] 0.810 F1
Dependency parsing [10] 0.854/0.833 F12
Semantic role labeling [10] 0.881/0.799 F13
Coreference resolution, within-document [12] 0.352;0.690;0.486;0.596 | MUC; B"3; CEAF ; BLANC
Relation discovery [13] 0.740-0.908 / 0.905-0.929 F14
Events (publication in preparation) 0.850 F1
Temporal expression identification [14] 0.750 F1
Temporal relations: event to note creation time [15] | 0.834 F1
Temporal relations: on i2b2 challenge data [15] 0.695 F1
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