Breast and Ovarian Cancer: from bench to clinic and back

Edna M. Mora, MD, FACS, MS Professor Department of Surgery, School of Medicine, Medical Sciences Campus, UPR University of Puerto Rico Comprehensive Cancer Center

Disclosures

I, or my immediate family member including spouse/partner, have at present and/or have had within the last 12 months, or anticipate NO financial interest/arrangement or affiliation with one or more organizations that could perceived as a real or apparent conflict of interest in context to the design, implementation, presentation, evaluation etc. of this presentation.

Presentation

- Translational research definitions
- Developing concepts: circulating tumor cells
- Developing concepts: cancer stem cells
- Target therapy definition
- Developing concepts: breast endocrine therapy
- Developing concepts: breast cancer Her-2 inhibition
- Treatment of ovarian cancer ascites
- Translational research at the UPRCCC

Translational Research

Developing concepts: circulating tumor cells (CTCs)

Circulating tumor cells: isolation

Harouaka R, et al. 2014 Pharmacology and Therapeutics 141: 209-221.

CENTRO COMPRENSIVO DE CANCER LEIDIVET GIELE DE DILETTES TIES

Circulating tumor cells: analysis

Harouaka R, et al. 2014 Pharmacology and Therapeutics 141: 209-221.

Circulating tumor cells: applications

- CTC enumeration as a prognostic biomarker for overall survival
- CTC enumeration as an indicator of response
- Exploratory studies on predictive biomarkers with CTCs
- Plasma DNA as an alternative technology

Harouaka R, et al. 2014 Pharmacology and Therapeutics 141: 209-221.

Alternative Technology: Circulating tumor DNA

Table 1 Detection of cf-DNA and its alterations in patients with solid tumors.									
Molecular alterations									
Breast	Lung	Colorectal	Prostate	Ovary					
TP53 (28-31,37) PIK3CA (32-34,37)	RAS (63–67) EGFR (72–77)	RAS, TP53, APC (10,84,90,92–94)	-	TP53 (127)					
Serum DNA integrity (40,41)	_	Serum DNA integrity (100)	Serum DNA integrity (102,115)	Serum DNA integrity (129)					
LOH and MSI (9,11,42,43)	LOH and MSI (8, 78)	-	LOH and MSI (110,112)	LOH (128)					
RASSF1A, APC, DAPK, ESR1, BRCA1, MGMT, GSTP1, Stratifin, MDR1, HSD17B4, HIC1, NEUROD1 (48–53)	P16 (65, 79) 14-3-3sigma (80)	SEPT9, ALX4, HLTF, HPP1 (84, 95–99)	GSTP1, RASSF1A, RARB2, AR (111– 114)	RASSF1A, PGR PROX, BRCA1, APC, DAPK, CDKN2A, HMLH1 (124, 126)					
	NA and its alterations in patients with solid tumors. Molecular alterations Breast TP53 (28–31,37) PIK3CA (32–34,37) Serum DNA integrity (40,41) LOH and MSI (9,11,42,43) RASSF1A, APC, DAPK, ESR1, BRCA1, MGMT, GSTP1, Stratifin, MDR1, HSD17B4, HIC1, NEUROD1 (48–53)	NA and its alterations in patients with solid tumors.Molecular alterationsBreastLungTP53 (28–31,37)RAS (63–67)PIK3CA (32–34,37)EGFR (72–77)Serum DNA integrity (40,41)–LOH and MSI (9,11,42,43)LOH and MSI (8, 78)RASSF1A, APC, DAPK, ESR1, BRCA1, MGMT, GSTP1, Stratifin, MDR1, HSD17B4, HIC1, NEUROD1 (48–53)P16 (65, 79)14-3-3sigma (80)(80)	NA and its alterations in patients with solid tumors.Molecular alterationsBreastLungColorectalTP53 (28-31,37)RAS (63-67)RAS, TP53, APCPIK3CA (32-34,37)EGFR (72-77)(10,84,90,92-94)Serum DNA integrity (40,41)-Serum DNA integrity (100)LOH and MSI (9,11,42,43)LOH and MSI (8, 78)-RASSF1A, APC, DAPK, ESR1, BRCA1, MGMT, GSTP1, Stratifin, MDR1, HSD17B4, HIC1, NEUROD1 (48-53)P16 (65, 79) 14-3-3sigma (80)SEPT9, ALX4, HLTF, HPP1 (84, (80)	NA and its alterations in patients with solid tumors.Molecular alterationsLungColorectalProstateBreastLungColorectalProstateTP53 (28-31,37)RAS (63-67)RAS, TP53, APC-PIK3CA (32-34,37)EGFR (72-77)(10,84,90,92-94)-Serum DNA integrity (40,41)-Serum DNASerum DNALOH and MSI (9,11,42,43)LOH and MSI-LOH and MSIRASSF1A, APC, DAPK, ESR1, BRCA1, MGMT, GSTP1, Stratifin, MDR1, HSD17B4, HIC1, NEUROD1 (48-53)P16 (65, 79)SEPT9, ALX4, 14-3-3sigmaGSTP1, RASSF1A, HLTF, HPP1 (84, (80)GSTP1, RASSF1A, RARB2, AR (111- (80)					

LOH, loss of heterozygosity; MSI, microsatellite instability.

Esposito A, et al. 2014 Cancer Treatment Rev 40: 648-655.

Alternative Technology: Circulating tumor DNA

Table 2

Ongoing clinical trials that study cf-DNA in solid tumors with therapeutic intervention.

Clinical trial	Status	Therapeutic intervention	Setting
NCT00899548*	Recruiting	Predict response after systemic therapy	MBC
NCT01198743*	Recruiting	Validate prognostic value of cf-DNA	Stage II–III CRC
NCT00977457*	Recruiting	Predict recurrence	Prostate cancer undergoing surgery
NCT01617915*	Recruiting	Correlate cf-DNA with response to neoadjuvant CT	BC candidate to neoadjuvant CT
NCT01776684*	Recruiting	Evaluation of EGFR TKI resistance mechanism	NSCLC
NCT01836640 [*]	Not yet recruiting	Evaluate cf-DNA as a surrogate for tumor biopsy to identify tumor genetic alterations	MBC

CT, chemotherapy; CRC, colorectal cancers; cf-DNA, circulating cell-free DNA; MBC, metastatic breast cancer; NSCLC, non small cell lung cancer; BC, breast cancer; EGFR TKI, epidermal growth factor receptor tyrosine kinase inhibitor.

CENTRO COMPRENSIVO DE CANCER

Esposito A, et al. 2014 Cancer Treatment Rev 40: 648-655.

Developing concepts: cancer stem cells (CSC)

- Cancer stem cells= tumor-infiltrating cells=cancer metastasis-initiating cells
- Characteristics:
 - Self renewal
 - **Differentiation potential**
 - Resistance to chemotherapy
 - Resistance to radiation therapy
- Common seed for therapy-resistant recurrence and metastasis

Cancer Stem Cells

- 60-70% of these recurrences are distant metastases.
- Reasons- therapeutic deficiencies (under treatment, local tumor missed at surgery, micrometastases)
 - breast cancer stem cells

Cancer Stem Cells

- Adult stem cells- undifferentiated cell, found among differentiated cells in a tissue or organ that can renew itself and can differentiate to yield some or all of the major specialized cell types of the tissue or organ.
- Subpopulation of cancer cells similar to adult stem cells.
- Mammary cancer stem cells- CD44, CD24, ALDH1
- Contribute to heterogeneicity and EMT.
- Dormant (G0)- low proliferation
- Exclude intracellular toxins (chemotherapy)

Breast Cancer Stem Cells

Cell-type origin

Clinical manifestation and molecular features

Primitive stem cell (CD49f⁺/DNER⁺/DLL1⁺ or CD24⁺/CD49f⁺/DNER⁺)

Bipotent luminal progenitor cell (CD49f⁺/EPCAM⁺/MUC1⁻/ CD133⁻/CD10⁺)

Committed luminal progenitor cell (CD49f⁺/EPCAM⁺/MUC1⁺/ CD133⁺/CD10⁻)

Mature cell (CD49f⁻/EPCAM⁺/MUC1⁺/ CD133⁺/CD10⁻)

Breast Cancer Stem Cells: selfrenewal pathways

Geng S-Q, et al. 2014 Cancer letters April 17.

Breast Cancer Stem Cells

Breast Cancer Stem Cells

Smalley M, eta I. 2012 Cancer Letters http://dx.doi.org/10.1016/j.canlet.2012.04.023

universided de nuecho pio

Breast Cancer Stem Cells: targeting CD47

Geng S-Q, et al. 2014 Cancer letters April 17.

Cancer Stem Cells

Important Questions

- Do cancer start in normal mammary stem cells or some malignant cells acquire a CSC phenotype?
- Are the CSC different for different types of breast cancer? (plasticity vs. dynamic changes)
- Are CSC different in metastatic sites?
- Do limitations in detection reflect a flaw in the concept?
- Should we change Phase II and Phase III goals to assess CSC therapy?

Developing Concepts: Target Therapy

- A type of treatment that uses drugs or other substances to identify and attack specific types of cancer cells with less harm to normal cells.
- Targeted therapy or molecularly targeted therapy is a type of medication that blocks the growth of cancer cells by interfering with specific targeted molecules needed

Target Therapy

Table 10-14 Selected FDA-Approved Targeted Therapies

Generic Name	Trade Name	Company	Target	FDA Approval Date	Initial Indication
Trastuzumab	Herceptin	Genentech	HER2	9/1998	Breast cancer
Imatinib	Gieevec	Novartis	c-kit, bcr-abl, PDGFR	5/2001, 12/2002	CML, GIST
Cetuximab	Erbitux	ImCione Systems	EGFR	2/2004	Colorectai cancer
Bevacizumab	Avastin	Genentech	VEGF	2/2004	Coiorectai cancer, iung cancer
Erlotinib	Tarceva	Genentech, OSI Pharmaceuticals	EGFR	11/2004	Non-smail ceil lung cancer
Sorafenib	Nexavar	Bayer	Raf, PDGF, VEGFR, c-kit	12/2005	RCC
Sunitinib	Sutent	Pfizer	VEGFR PDGFR c-kit, Fit-3, RET	1/2006	GIST, RCC
Dasatinib	Sprycei	Bristol-Myers Squibb	bcr-abl, src family, c-kit, EPHA2, PDGFR- β	6/2006	CML
Lapatinib	Tykerb	GiaxoSmithKiine	EGFR and HER2	3/2007	Breast cancer
Temsirolimus	Torisei	Wyeth	mTOR	5/2007	RCC

Developing concepts: breast endocrine therapy

Breast cancer endocrine therapy resistance

- 66% of breast cancers express hormone receptors
- 50% of breast cancers express hormone receptors and Her-2.
- Expression of Her-2 confers hormonal resistance to treatment.
- Tumors that initially express HR eventually do not respond to therapy

Patani N. et al 2014 Mol Cell Endocrinology 382: 683-694.

Breast cancer endocrine therapy: resistance mechanisms

- Down-regulation of ER expression
- ER mutations
- Altered expression of ER co-regulators
- Ligand-independent activation of ER and co-activators by growth factor receptor kinases

Patani N. et al 2014 Mol Cell Endocrinology 382: 683-694.

Breast cancer endocrine therapy

CENTRO COMPRENSIVO DE CANCER

Patani N. et al 2014 Mol Cell Endocrinology 382: 683-694.

Therapeutic options for Her-2 positive breast cancer

- EGFR family-ErbB1 (HER-1), ErbB2 (Her-2/neu), ErbB3 (Her-3), ErbB4 (Her-4).
- ► Her-2 is amplified in 20-25% of breast cancer
- Her-2 is associated with adverse prognostic outcomes in early and advanced disease.
- Tratuzumab (Herceptin), Pertuzumab (Perjeta), Adotrastuzumab emtansine (Kadcyla), Lapatinib (Tykerb).

The Epidermal Growth factor Receptors Family

Two Mechanisms of EGFR Inhibition

Mechanism - Ado-trastuzumab emtansine (Kadcyla)

Summary of Mechanisms

Advances in Ovarian Cancer Ascites Treatment

- ► 66% of ovarian cancer patients develop malignant ascites.
- Malignant ascites definition- (NCI) accumulation of fluid containing cancer cells in the abdomen.
- Symptoms- abdominal pressure, distention, dyspnea, blotting, pelvic pain, bowel/bladder dysfunction.
- 40% of ovarian cancer patients with ascites live 5 years Thus, ascites is a chronic problem.
- Mechanisms:

lymphatic obstruction

increased vascular permeability

release of inflammatory cytokines

direct increase of fluid production by the cancer cells lining

the peritoneum.

Advances in Ovarian Cancer Treatment

Treatment is usually drainage as needed.

Advances in Ovarian Cancer Ascites Treatment: Antiangiogenics

Eskander RN, et al. Int J Women Health 2012 (4): 395-404.

Advances in Ovarian Cancer Ascites Treatment: VEGF trap

Eskander RN, et al. Int J Women Health 2012 (4): 395-404

Advances in Ovarian Cancer Ascites Treatment: Trifunctional antibody catumaxomab

Eskander RN, et al. Int J Women Health 2012 (4): 395-404

Advances in Ovarian Cancer Ascites Treatment:

Eskander RN, et al. Int J Women Health 2012 (4): 395-404

In summary..... Translational Research Pathways Circulating Tumor cells Cancer Stem Cells Target therapy Endocrine Therapy ► Her-2 therapies Treatment of Ovarian Cancer Ascites

Questions?